
ASG-Manager Products�

Relational Technology Support: SQL/DS
Version 2.5

Publication Number: MPR0200-25-RELSQ
Publication Date: November 1996

The information contained herein is the confidential and proprietary information of Allen Systems Group, Inc. Unauthorized use of this information and disclosure to
third parties is expressly prohibited. This technical publication may not be reproduced in whole or in part, by any means, without the express written consent of Allen
Systems Group, Inc.

© 1998-2002 Allen Systems Group, Inc. All rights reserved.
All names and products contained herein are the trademarks or registered trademarks of their respective holders.

ASG Worldwide Headquarters Naples Florida USA | asg.com | info@asg.com
1333 Third Avenue South, Naples, Florida 34102 USA Tel: 239.435.2200 Fax: 239.263.3692 Toll Free: 800.932.5536 (USA only)

© 2002 Allen Systems Group, Inc.
All names and products are trademarks or registered trademarks of their respective holders.

ASG Documentation/Product Enhancement Fax Form
Please FAX comments regarding ASG products and/or documentation to (239) 263-3692.

Company Name Telephone Number Site ID Contact name

Product Name/Publication Version # Publication Date

Product:

Publication:

Tape VOLSER:

Enhancement Request:

ASG Support Numbers
ASG provides support throughout the world to resolve questions or problems regarding
installation, operation, or use of our products. We provide all levels of support during normal
business hours and emergency support during non-business hours. To expedite response time,
please follow these procedures.

Please have this information ready:

� Product name, version number, and release number

� List of any fixes currently applied

� Any alphanumeric error codes or messages written precisely or displayed

� A description of the specific steps that immediately preceded the problem

� The severity code (ASG Support uses an escalated severity system to prioritize service to
our clients. The severity codes and their meanings are listed below.)

� Verify whether you received an ASG Service Pack for this product. It may include
information to help you resolve questions regarding installation of this ASG product. The
Service Pack instructions are in a text file on the distribution media included with the
Service Pack.

If You Receive a Voice Mail Message:

1 Follow the instructions to report a production-down or critical problem.

2 Leave a detailed message including your name and phone number. A Support representative
will be paged and will return your call as soon as possible.

3 Please have the information described above ready for when you are contacted by the Support
representative.

Severity Codes and Expected Support Response Times

ASG provides software products that run in a number of third-party vendor environments. Support
for all non-ASG products is the responsibility of the respective vendor. In the event a vendor
discontinues support for a hardware and/or software product, ASG cannot be held responsible for
problems arising from the use of that unsupported version.

Severity Meaning Expected Support Response
Time

1 Production down,
critical situation

Within 30 minutes

2 Major component of product disabled Within 2 hours

3 Problem with the product, but customer has
work-around solution

Within 4 hours

4 "How-to" questions and enhancement
requests

Within 4 hours

Business Hours Support

Non-Business Hours - Emergency Support

Your Location Phone Fax E-mail

United States and
Canada

800.354.3578 239.263.2883 support@asg.com

Australia 61.2.9460.0411 61.2.9460.0280 support.au@asg.com

England 44.1727.736305 44.1727.812018 support.uk@asg.com

France 33.141.028590 33.141.028589 support.fr@asg.com

Germany 49.89.45716.222 49.89.45716.400 support.de@asg.com

Singapore 65.6332.2922 65.6337.7228 support.sg@asg.com

All other countries: 1.239.435.2200 support@asg.com

Your Location Phone Your Location Phone

United States and
Canada

800.354.3578

Asia 65.6332.2922 Japan/Telecom 0041.800.9932.5536

Australia 0011.800.9932.5536 Netherlands 00.800.3354.3578

Denmark 00.800.9932.5536 New Zealand 00.800.9932.5536

France 00.800.3354.3578 Singapore 001.800.3354.3578

Germany 00.800.3354.3578 South Korea 001.800.9932.5536

Hong Kong 001.800.9932.5536 Sweden/Telia 009.800.9932.5536

Ireland 00.800.9932.5536 Switzerland 00.800.9932.5536

Israel/Bezeq 014.800.9932.5536 Thailand 001.800.9932.5536

Japan/IDC 0061.800.9932.5536 United Kingdom 00.800.9932.5536

All other countries 1.239.435.2200

ASG Web Site
Visit http://www.asg.com, ASG�s World Wide Web site.

Submit all product and documentation suggestions to ASG�s product management team at
http://www.asg.com/asp/emailproductsuggestions.asp.

If you do not have access to the web, FAX your suggestions to product management at (239)
263-3692. Please include your name, company, work phone, e-mail ID, and the name of the ASG
product you are using. For documentation suggestions include the publication number located on
the publication�s front cover.

http://www.asg.com/asp/emailproductsuggestions.asp
http://www.asg.com

i

Contents

Preface v
About this Publication v
Publication Conventions vi

1 Introduction 1
Overview 1
Features 2

Introduction 2
Corporate Dictionary/Repository 2
Design Diagramming Tool 3
Database Design Tool 3
Data Definition Language (DDL) Generator 3
COBOL, PL/I, and ASSEMBLER Generator 4
Dynamically Submitting SQL Statements to DB2 or SQL/DS 4
Importing Information from SQL/DS 5

Functions: How to Use the Tools We Provide 5
Introduction 5
Standards 5
SQL/DS Database Design 6
Implementation 9
Maintenance 11
Summary 14

Benefits 14
Introduction 14
A Shared and Re-usable Corporate Model 14
Automated Design 16
Conclusion 17

2 What Do You Want to Do? 19
Introduction 19
ASG Support for Your SQL/DS Environment 19
SQL/DS Database Design 19

Producing Output Describing the SQL Design 19
Generating and Populating SQL Dictionary Definitions of Specified
Member Type 20

SQL/DS Dictionary Definition 20
Documenting an SQL/DS Dictionary Schema 20
SQL/DS Object Definition 20

SQL/DS Object Generation 21

ASG-Manager Products Relational Technology Support: SQL/DS

ii

Generating SQL Statements and SQL/DS Host Language Data
Structures 21
Generating Tailored SQL Statements and SQL/DS Host Language
Data Structures 21

Dynamically Submitting SQL Statements 22
Importing Information about SQL/DS Objects 22

3 SQL/DS Database Design 25
Introduction to SQL/DS Database Design 25

Overview 25
Support for Referential Integrity 26
Introduction to Referential Structures and Cycles 27
Features to Support SQL/DS 28

Designing a SQL/DS Database 29
Creating Entity and Userview Models 29
Generating a Relational Schema 29
Generating the SQL Design 30
Reporting the SQL Design 31
Populating the Dictionary with SQL Members 31
Examples of the SQL/DS Database Design Process 33

SQL/DS Design Analysis 48
Output from the SQL REPORT Command 48
Output from the SQL PLOT CLUSTER Command 56
Output from the SQL PLOT REFERENTIAL-STRUCTURES
Command 64
Output from the SQL LIST TABLES Command 73
Output from the SQL LIST CYCLES Command 74

Generated SQL Member Definitions 76
Generated SQL-TABLE Member 76
Generated SQL-INDEX Member 77
Generated SQL-VIEW Member 78
Generated SYSTEM Member 79

4 Dictionary Definition 81
Introduction to Documenting an SQL/DS DBMS 81
Documenting SQL/DS Objects 82
Clauses Establishing Relationships between SQL/DS Member Types 83
Documenting the Columns of SQL/DS Tables and Views 84
Documenting SQL/DS Security Information 88
Naming Conventions for SQL/DS Members 89

The Derivation of External Names from SQL/DS Members 89
The Derivation of Column Names from SQL/DS Members 90
The Derivation of the Names of Tables, Views, Indexes, and
Dbspaces from SQL/DS Members 90
The Derivation of the Names of Synonyms, Constraints,
Correlations, and Programs 90
The Derivation of SQL/DS User Names 91

Naming Guidelines for SQL/DS Members 91
Processing Your SQL/DS Members 92

Contents

iii

5 Implementation and Maintenance 95
Introduction to Generating SQL Statements and SQL/DS Host Language
Data Structures 95

Overview of Generating SQL Statements and SQL/DS Host
Language Data Structures 95
Generating Column Data Types 96
Submitting Generated Output to Your Relational Environment 97

Tailoring SQL Statements and SQL/DS Host Language Data Structures 97
Introduction to Tailoring 97
Displaying Internal Diagnostic Output 100
Generating Object Names and External Names from Aliases 101
Generating SQL CREATE, LABEL ON, and COMMENT ON
Statements from One Member at the Same Time 102
Generating a Host Language Indicator Structure 103
Tailoring DATE and TIME Character Field Lengths 104

6 Generation of SQL/DS Application Programs 105

7 Dynamic SQL Services 107
Introduction to Dynamic SQL Services 107

Overview of Dynamic SQL Services 107
Security and Authorization 107
Output Printed by Dynamic SQL Services 108

Creating Executive Routines to Dynamically Submit SQL Statements to
Your DB2 or SQL/DS Environment 109

Introduction to Dynamically Submitting SQL Statements from
within Executive Routines 109
Variables Used in Dynamic SQL Services 113
The COMMAND and EXECUTIVE Members Used in Dynamic
SQL Services 115
Creating and Populating a Table 115
Inserting Rows into a Table 117
Importing Information and Assigning it to Command
Variables 118
Submitting any SQL Statement That Can be Prepared 120
Creating Your Own HELP Text 122

8 Import 123
Introduction to Importing Information about External Objects 124

Overview of Importing Information 124
Naming Guidelines When Importing Information 125
How Columns Are Documented 126

Tailoring Import Commands 128
Introduction to Tailoring Import Commands 128
Tailorable Corporate Executive Routines 130
Global Variables Used in the Import Commands 131

9 Member Types and Commands 143
Member Type and Command Descriptions 143

EXTRACT SQL 143

ASG-Manager Products Relational Technology Support: SQL/DS

iv

ISQL 149
POPULATE 151
PREVIEW 153
RADD 156
RECONCILE 157
RIGN 168
RREN 169
RREP 170
RUPD 171
SQL ACQUIRE 172
SQL ALTER 173
SQL COMMENT and SQL LABEL 180
SQL CREATE 182
SQL-DBSPACE 184
SQL DROP 187
SQL GRANT and SQL REVOKE 190
SQL-INDEX 192
SQL LABEL 197
SQL LIST CYCLES 197
SQL LIST TABLES 198
SQL PLOT CLUSTER 200
SQL PLOT REFERENTIAL-STRUCTURES 203
SQL POPULATE 208
SQL PREVIEW 218
SQL-PRIVILEGE 229
SQL PRODUCE 236
SQL REPORT 240
SQL REVOKE 242
SQL SIZE 243
SQL SYNONYM 244
SQL-TABLE 245
SQL-USER 259
SQL-VIEW 262

Defining an AS Clause 277
Filing Generated Output in a User-member 278

Appendix
The Manager Products Name Reduction Process 279

Introduction to the Name Reduction Process 279
Description of the Name Reduction Process 279
Example of Name Reduction 280

Glossary 283

Index 289

v

Preface

The ASG-Manager Products Relational Technology Support: SQL/DS manual describes the
support provided by the ASG-Manager Family of Program Products for the SQL/DS relational
environment. It is assumed that you have basic understanding of ASG-Manager Products (herein
called Manager Products) and the computing industry in general, and you are familiar with the
SQL/DS environment and SQL/DS technology.

ASG welcomes your comments, as a preferred or prospective customer, on this publication or on
the Manager Products.

About this Publication

The ASG-Manager Products Relational Technology Support: SQL/DS consists of these chapters:

• Chapter 1, "Introduction," gives you an introductory overview of the support provided by
the Manager Products Family for SQL/DS.

• Chapter 2, "What Do You Want to Do?," directs you to the relevant documentation in this
manual.

• Chapter 3, "SQL/DS Database Design," describes how to automate the production of a first
cut SQL/DS database design and how to populate your Corporate Dictionary/Repository
with the relevant member definitions.

• Chapter 4, "Dictionary Definition," describes how to document an SQL/DS environment in
your Corporate Dictionary/Repository.

• Chapter 5, "Implementation and Maintenance," describes how to use Manager Products to
implement and maintain your SQL/DS environment and how to generate COBOL, PL/I, and
Assembler data descriptions from your dictionary definitions. Sections dealing with
tailoring may have been removed by the Systems Administrator.

• Chapter 6, "Generation of SQL/DS Application Programs," will be issued in a forthcoming
Amendment List. It will describe the use of Manager Products in the generation of SQL/DS
application programs.

ASG-Manager Products Relational Technology Support: SQL/DS

vi

• Chapter 7, "Dynamic SQL Services," describes how to dynamically submit SQL statements
to SQL/DS, and receive the results, from within Manager Products. Sections dealing with
tailoring may have been removed by the Systems Adminisrator.

• Chapter 8, "Import," describes how to import information about SQL/DS objects and how to
use the information to populate the Corporate Dictionary/Repository with member
definitions. Sections dealing with tailoring may have been removed by the Systems
Administrator.

• Chapter 9, "Member Types and Commands," brings together the specifications of all
SQL/DS-related Manager Products commands and MEMBER types, arranged
alphabetically. After you have familiarized yourself with the concepts of Manager Products
support of SQL/DS and the facilities offered, as described in Chapters 1 through 8, this
chapter will thus provide a directly accessible source for subsequent technical reference. We
assume that you understand SQL/DS and its terminology.

Publication Conventions
The following conventions apply to syntax diagrams that appear in this manual.

Diagrams are read from left to right along a continuous line (the "main path"). Keywords and
variables appear on, above, or below the main path.

Convention Represents

�� at the beginning of a line indicates the start of a statement.

� at the end of a line indicates the end of a statement.

at the end of a line indicates that the statement continues on the line below.

at the beginning of a line indicates that the statement is continues from the line
above.

Keywords are in upper-case characters. Keywords and any required punctuation characters or
symbols are highlighted. Permitted truncations are not indicated.

Variables are in lower-case characters.

Statement identifiers appear on the main path of the diagram:

A required keyword appears on the main path:

An optional keyword appears below the main path:

�

�

� �COMMAND

� �COMMAND KEYWORD

� �COMMAND�
KEYWORD

Preface

vii

Where there is a choice of required keywords, the keywords appear in a vertical list; one of them
is on the main path:

or

Where there is a choice of optional keywords, the keywords- appear in a vertical list, below the
main path:

The repeat symbol, <<<<<<, above a keyword or variable, or above a whole clause, indicates that
the keyword, variable, or clause may be specified more than once:

A repeat symbol broken by a comma indicates that if the keyword, variable or clause is specified
more than once, a comma must separate each instance of the keyword, variable- or clause:

The repeat symbol above a list of keywords (one of which appears on the main path) indicates that
any one or more of the keywords may be specified; one at least must be specified:

The repeat symbol above a list of keywords (all of which are below the main path) indicates that
any one or more of the keywords maybe specified, but they are all optional:

Convention Represents

� �COMMAND
KEYWORD1
KEYWORD2
KEYWORD3

� �COMMAND KEYWORD1
KEYWORD2
KEYWORD3

� �COMMAND
KEYWORD1
KEYWORD2

� �COMMAND KEYWORD
<<<<<<<<

� �COMMAND KEYWORD
<<< , <<

� �COMMAND KEYWORD1
KEYWORD2

<<<<<<<<<<<<<<<<

� �COMMAND
KEYWORD1
KEYWORD2

<<<<<<<<<<<<<<<<

ASG-Manager Products Relational Technology Support: SQL/DS

viii

Allen Systems Group technical publications use these conventions:

Convention Represents

ALL CAPITALS Directory, path, file, dataset, member, database, program,
command, and parameter names.

Initial Capitals on Each Word Window, field, field group, check box, button, panel (or
screen), option names, and names of keys. A plus sign (+) is
inserted for key combinations (e.g., Alt+Tab).

lowercase italic
monospace

Information that you provide according to your particular
situation. For example, you would replace filename with
the actual name of the file.

Monospace Characters you must type exactly as they are shown. Code,
JCL, file listings, or command/statement syntax.

Also used for denoting brief examples in a paragraph.

1

1 1Introduction

Overview

ASG designs and builds Computer Aided Software Engineering (CASE) tools. These are state of
the art tools, designed to help business users solve problems with the development and
maintenance of information systems.

We automate the major tasks involved in the design and implementation of DB2 and SQL/DS
databases and the applications that use them: you progress from pictures (analyst diagrams)
through to practical solutions (database and application programs).

Using our tools you can build and maintain an efficient DB2 or SQL/DS environment far faster
then is possible using manual methods.

The tools are based upon use of a Corporate Dictionary/Repository in which you can store all of
your organization’s documentation and program code. They share a common user interface (of
which online documentation and HELP are part) which you can tailor to suit the environment you
are used to and to suit users with differing skills.

Using our import facilities you can populate the Corporate Dictionary/Repository with members
generated from information imported from DB2 and SQL/DS.

We assume that you understand DB2 and SQL/DS and their terminology.

ASG-Manager Products Relational Technology Support: SQL/DS

2

Features

Introduction
We provide the following tools to support DB2 and SQL/DS system life cycles:

• A Corporate/Dictionary Repository

• A Design Diagramming Tool

• A Database Design Tool

• A Data Definition Language (DDL) generator

• A COBOL, PL/I, and ASSEMBLER data structure generator

• Dynamic SQL Services

• Import facilities.

We recommend that you use all of the above to support the entire system life cycle. However, you
can use each tool independently, as suits your purpose.

Corporate Dictionary/Repository
The following list highlights the features of the Corporate Dictionary/Repository:

• A repository in which to store all of your documentation and program code

• Supports documentation of all DB2 and SQL/DS components including security
information and DB2 plans

• Supports Referential Integrity

• All major DBMS, including IMS, can be documented as well as any other, perhaps
non-computerized systems, such as organization structures and business plans. For example,
data shared between DB2 and IMS may be documented once only and maintained centrally.

• Historical, production and development versions of a system and its components may be
documented

• Populated using the following methods:

— Using diagrams created on your Intelligent Workstation

— Automatically, as the result of using the design tool

— Directly, using definition statements

— Importing information.

• Interrogation and reporting capabilities.

Refer to the ASG-ControlManager User’s Guide for details of using a dictionary.

1 Introduction

3

Design Diagramming Tool
The following list highlights the features of the Diagramming Tool:

• Easy drawing of structured design diagrams including, for example, Entity Models and
organizational charts on your Intelligent Workstation

• Diagrams can be loaded to a dictionary on the host (mainframe) system

• Diagram validation for consistency and logic according to predefined rules

• A local dictionary to which you can download a subset of the host dictionary

• Information in the host dictionary can be locked while you have it on the Intelligent
Workstation

• The host dictionary can be interrogated while diagrams are being created

• Diagram objects, connectors, menus, and validation rules can all be tailored to suit your
environment.

Refer to the ASG-ManagerView User’s Guide for details of the diagramming tool.

Database Design Tool
The following list highlights the features of the Design Tool:

• An automated database design and information modeling tool

• Supports most data analysis methodologies, both top down business-oriented (Entity
modeling) and bottom-up application-oriented (Userview modeling) approaches

• Reconciles top-down and bottom-up design information

• Produces a normalized logical database design (1st, 2nd, or 3rd normal form)

• Produces design reports that enable you to evaluate the design

• Automatically populates the dictionary with a first-cut physical design made up of tables,
views, and indexes.

Data Definition Language (DDL) Generator
The following list highlights the features of the DDL Generator:

• Can generate DDL statements for the major DBMS such as DB2, SQL/DS and IMS

• Generates SQL statements (CREATE, ALTER, DROP, GRANT, etc.) from dictionary
documentation for submission to your DB2 or SQL/DS environment

• Supports Referential Integrity

• Generates impact analysis reports for DROP statements

• Uses a Name Reduction Process to ensure that generated names are not too long for SQL

• Can be tailored to suit your installation’s conventions and standards.

Refer to Chapter 5, "Implementation and Maintenance," on page 95 for details of DDL generation
for SQL/DS.

ASG-Manager Products Relational Technology Support: SQL/DS

4

COBOL, PL/I, and ASSEMBLER Generator
The following list highlights the features of the source language generator:

• Generates host language data structures for inclusion in programs which access the DBMS

• Uses a Name Reduction Process to ensure that generated names conform to the rules
applying to the program language in which they are to be used

• Can be tailored to suit your installation’s conventions and standards

• Can generate table layouts documenting the columns, edit procedures, field procedures, and
validation procedures of tables and views.

Refer to Chapter 5, "Implementation and Maintenance," on page 95 for details of source language
generation for SQL/DS.

Dynamically Submitting SQL Statements to DB2 or SQL/DS
The following list highlights the features of Dynamic SQL Services:

• Submits from within Manager Products to your relational environment, any SQL statement
that can be dynamically prepared for execution

• Receives from your relational environment and within Manager Products, result tables
generated in response to SQL queries

• Receives from your relational environment and within Manager Products, SQLCODEs, and
SQL/DS HELP text

• Creates Executive Routines containing embedded SQL statements which can:

— Submit any SQL statements that can be dynamically prepared for execution

— Create and populate a table

— Insert rows into a table

— Import information from your relational environment and assign it to Manager Products
Procedures Language variables.

Refer to Chapter 7, "Dynamic SQL Services," on page 107 for details of Dynamic SQL Services.

1 Introduction

5

Importing Information from SQL/DS
The following list highlights the features of the import facilities:

• Imports information about DB2 or SQL/DS objects onto the Workbench Translation Area
(WBTA)

• Generates proposed members from the imported information and provides:

— A Reconciliation Report comparing the proposed members with existing dictionary
members having the same name

— The ability to change the proposed members. Commands are provided which enable
you to work from the Reconciliation Report to make the changes.

— The ability to tailor how proposed members are generated so that they suit your
dictionary standards.

• Generates member definition statements for the proposed members in layouts which may be
tailored to suit your dictionary standards

• Enters the proposed members into the dictionary.

Refer to Chapter 8, "Import," on page 123 for details of importing information.

Functions: How to Use the Tools We Provide

Introduction
Each of the features we provide supports part of a DB2 or SQL/DS system life cycle. The life
cycle consists of the following phases:

• Design

• Implementation

• Maintenance.

However, standards, particularly naming standards, need to be established and supported
throughout the life cycle. Before using our tools you should consider how they enable you to
promote standards throughout the life cycle.

Standards
Our tools enable you to implement and control standards throughout the life cycle. They are
particularly useful in the context of:

• Naming standards

• Database development standards

• Application development standards.

ASG-Manager Products Relational Technology Support: SQL/DS

6

If your systems are documented in the dictionary, it can help you and your development teams to
identify homonyms (same name different thing) and can be checked for synonyms (same thing
different name). Checking for the existence of synonyms will be an easy matter if you have
naming standards.

You can record several alternative names (aliases) for each definition in the dictionary, to suit
different application environments. When you come to generate SQL statements, COBOL, PL/I,
and/or ASSEMBLER source direct from the dictionary, you can use the relevant alias name
instead of the unique name by which the definition is retrieved. We have also provided a Name
Reduction Process to ensure that the names you generate are not too long for the target
environment.

So, you can help your development teams to adhere to your standards by providing, via the
dictionary, facilities that enable you to check and enforce them. If you do not have naming
standards, getting them off the ground will be easier if your environment is controlled by use of a
central dictionary.

In addition to naming standards you can promote your database and application development
standards. You can tailor our generation tools so that the output they produce is automatically
consistent with your standards.

Storing documentation of your standards in the dictionary or in the user definable HELP system
that we provide will ensure that they are centrally available.

So, if you control your systems life-cycle using our tools, you can help ensure that the systems you
build conform to your standards. The result will be systems which are easier to understand and
more effective communications.

SQL/DS Database Design

Overview
DB2 and SQL/DS database design involves 2 stages:

• Identification of the data and functions required to support a particular application or several
interrelated applications, and determine how that data is to be stored

• Deciding on the operational aspects of the database, considering for example, the physical
storage and performance requirements.

And, with DB2 and SQL/DS, you need to take Referential Integrity into account in both stages.

Identifying Data and Functional Requirements
To begin with you must identify the data to be used in the database and define it in the form of:

Entity Models. Data models that describe entities, their attributes, and the relationships between
them and

Userview Models. Definitions of the databases’ end-users’ requirements.

1 Introduction

7

You can use the Diagram Editor to draw Entity Models on an Intelligent Workstation and then
upload them to the host dictionary where they are converted into and held as definitions.
Definitions in the dictionary can be interrogated, reported, and used by the design tool. The
Diagram Editor will check your diagrams, according to predefined rules, for validity, consistency,
and completeness.

The host dictionary is always available while you are using the Diagramming Tool. You can
interrogate and report from the dictionary, to obtain the information you need, while you are
creating your entity relationship diagrams. If you are updating information which is already in the
dictionary, you can lock that information in order to prevent other users from updating it until you
are finished.

The information recorded in Userviews is the result of detailed investigations by the data analyst
into existing documentation, table layouts, reports, and the requirements of the databases’ end
users. Userviews are entered as definitions directly to the dictionary.

Userview modeling is made much easier when your application systems are centrally documented
in the dictionary and you have implemented naming standards. You can look-up and document
data element definitions and control names.

If you have used our design tool to design other DBMS databases and that work was based on an
Entity Model that is still current, you can re-use that Entity Model and associated data element
documentation already in your dictionary, to design DB2 and SQL/DS databases.

For example, if you have recently designed an IMS database to support a transaction application
and want to extract data from it, to use in an end-user inquiry service based on a DB2 database,
you can exploit the Entity Model you created for the IMS design, to design the DB2 database.

Refer to Chapter 3, "SQL/DS Database Design," on page 25 for details of the SQL/DS design
process.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of adding
definitions to the dictionary.

Logical Database Design
Once the Entity Models and Userviews are documented in the dictionary, they can be moved onto
the Workbench Design Area (WBDA) where you can design, automatically, a third normal form
relational schema (logical database design). If particular circumstances such as stringent
performance requirements dictate it, you can choose to normalize to first or second normal form
only.

A wide variety of Design Reports enable you identify problems such as:

• Missing entities

• Homonyms and synonyms

• Redundant and/or inconsistent end-user requirements

and thus to resolve any conflicts between your userviews (bottom-up view) and entities (top-down
view). The reports also enable you to analyze the generated referential structures.

ASG-Manager Products Relational Technology Support: SQL/DS

8

Using these reports you can refine the design by adjusting your Entity and Userview Models and
iterating design on the WBDA until you are satisfied with the design and you understand its
referential structures.

Entity Models are easily adjusted by re-drawing entity relationship diagrams and (re) uploading
them to the host dictionary. Userview Models are adjusted by updating the information in the
dictionary, direct.

Physical Database Design
Once you are satisfied with the relational schema, it can be converted, automatically, to a first cut
physical design. The design comprises DB2 or SQL/DS tables, together with:

• Their respective primary keys and foreign keys and

• Unique indexes on the primary key

for referential integrity.

You can also generate views, if they are required.

You can and should review the design, on the WBDA, to ensure that it meets your requirements.
(At this point the design is represented as definitions of tables, indexes, and views.)

Once you are satisfied with the design on the WBDA, the dictionary can be populated,
automatically, with definitions of the tables, views and indexes that comprise the first cut physical
design. The table definitions include clauses for primary and foreign keys. You then complete the
physical design in the dictionary.

Use the Design Reports to assist you to:

• Derive the referential structures of the tables

• Determine the DB2 table space or SQL/DS dbspace usage of related tables

• Decide the referential integrity constraints on the delete rules for tables.

A SIZE function is also provided to enable you to estimate the storage space required by tables.

You can use the dictionary interrogation and reporting features to help generate the information
you need to make the final design decisions regarding operational and performance requirements.
For example, you can interrogate the dictionary to check which tables are stored in which DB2
storage groups.

Then you can add to the definitions comprising the design, information specific to operational and
performance requirements.

You complete the physical design as follows:

• Document the other object types required: SQL/DS dbspaces or DB2 databases, storage
groups and table spaces as well as additional (non-primary) DB2 and SQL/DS indexes

• Document security and authorization information consisting of privileges and users.

1 Introduction

9

Some of the useful features that support complete documentation of the design are:

• Data definitions in the dictionary use the same terminology and keywords as SQL

• As with DB2’s LIKE clause you can specify that a table (definition) is to contain the same
columns (and other characteristics) as an existing table (definition)

• Columns are documented as separate definitions. This gives you greater control over data
redundancy and data sharing between tables and between tables and other non DB2 or
SQL/DS systems.

• Since columns in different tables can share the same data elements and the same data
elements can be shared by other DBMS, each data element definition can be associated with
several table definitions and with dictionary documentation of other DBMSs such as IMS.
(This is one aspect of how our tools encourage and help to control data sharing.)

• You can attach labels and comments to tables and views and to individual columns within
them

• You can define synonyms for users and generate SQL CREATE SYNONYM statements
(very useful after dropping a database or dbspace and having to recreate large numbers of
synonyms).

Refer to Chapter 4, "Dictionary Definition," on page 81 for details of SQL/DS dictionary
definitions.

Implementation

Implementing Your Design
When your database is fully documented in the dictionary, you can generate, automatically, all of
the SQL statements required to define objects in the DB2 or SQL/DS Catalog.

You can also use the generation features to impose standards by tailoring them so that the output
they produce conforms to your standards and procedures for application development.

Using the generators we provide, you can develop and maintain several DBMS applications by
exporting the required database objects and program code from the same central data model.

Dynamic SQL Services enable you to submit SQL statements to DB2 or SQL/DS from within the
Manager Products environment.

Refer to Chapter 5, "Implementation and Maintenance," on page 95 for details of SQL generation
for SQL/DS.

Developing Applications
Having implemented the design you will already have started work on building application
programs which will access the data in the database.

You can generate the data declaration statements required in application programs, automatically,
from the definitions of tables and views in the dictionary. (Data declaration statements define the
DB2 tables and views that the application accesses.)

ASG-Manager Products Relational Technology Support: SQL/DS

10

And you can generate data structures (that is, the host variables used to contain data transferred to
and from DB2 and SQL/DS) for COBOL, PL/I, and ASSEMBLER application programs.

Implementation will be smoother if, as discussed earlier in this branch, you have used the
dictionary to help you impose naming standards.

When you come to generate COBOL, PL/I, and/or ASSEMBLER source, you can use the relevant
alias name instead of the unique name which the definition is retrieved. We have also provided a
Name Reduction Process to ensure that the names you generate are not too long for the target
environment.

By documenting your application programs in the dictionary, the impact of changes to tables and
views etc. can be measured easily: by interrogating the dictionary. Thus the dictionary becomes an
intelligent and active part of your change-control procedures.

Refer to Chapter 5, "Implementation and Maintenance," on page 95 for details of COBOL, PL/I,
and ASSEMBLER generation for SQL/DS.

Monitoring and Tuning the Design
Following the initial (probably pilot) implementation of the database design you will want to
experiment with the operational and performance aspects of the database design in order to
improve the performance of the applications that use it.

This involves:

• Monitoring the database in order to identify if tuning is required and what needs to be done

• Adjusting the design in the dictionary, and then

• Regenerating the necessary components from the dictionary.

For example, unormalizing certain tables for performance reasons may involve combining tables.

You can:

• Interrogate the dictionary and

• Generate SQL DROP statements with full impact analysis reports

to find out exactly what the effect of dropping an object will be.

Of course the process of monitoring and tuning the database will not only follow the initial
implementation: it will be continuous.

1 Introduction

11

Maintenance

Overview
After the implementation has gone live, it will be necessary to maintain it. Activities typical during
the maintenance phase are:

• Maintain the documentation of the implemented system and ensure that changes and
enhancements are documented in the dictionary

• Interrogation. For example: 'where else is this field used?'

• Reporting. You want, for example, to send a complete list of all your tables and views
containing sales data to another office.

• Adding columns to a table or changing some of its characteristics (adding a foreign key, for
example)

• Authorize new users to use certain tables

• Add or amend comments to tables and views

• Add synonyms to tables and views

• Maintain application programs.

Change Control in the System Life Cycle
Once the database and associated application development has gone live and the documentation in
the dictionary is complete, it is likely that you will have to support ongoing development as well as
production systems.

Use the status facility to maintain both production and development versions of the documentation
in the dictionary.

Using statuses your development teams can create an updated version of the production system
documentation without changing the production version and without duplicating what they do not
change. Thus they can design, document and generate SQL, COBOL, PL/I, and ASSEMBLER for
a new/changed version of the system under development, without affecting the production system
and without being isolated from it.

Refer to the ASG-Manager Products Advanced Status manual for details about statuses.

Interrogation and Reporting
You can:

• Interrogate

• Report from

• Produce documentation of table layouts from

the dictionary in order to obtain information about the systems documented in it. For example, you
can interrogate the relationships between definitions for the purpose of impact analysis and you
can produce table layouts documenting tables and views and their columns, edit procedures, field
procedures, and validation procedures.

ASG-Manager Products Relational Technology Support: SQL/DS

12

You can index dictionary definitions using keywords/classifications which are meaningful in your
environment. You can also add notes and other descriptive information about the system. All such
information can be retrieved easily when it is required.

Using Dynamic SQL Services you can also interrogate your DB2 or SQL/DS environment from
within Manager Products.

Refer to "SQL-TABLE" on page 245 for details of SQL/DS table layouts.

Refer to "Dynamic SQL Services" on page 13 for details of Dynamic SQL Services.

Dropping and Altering Objects
Dropping objects is a powerful DB2 and SQL/DS feature: so powerful that it should be used with
care. If you generate your SQL DROP statements from the dictionary you get a complete impact
analysis report of what you will lose or affect before you drop the object.

Note:
Although DB2 will not let you drop a storage group containing table spaces, it may be useful to
use this command to see what is in the storage group.

An object may only need to be dropped temporarily in order for you to perform some major
restructuring or maintenance: if you have a definition in the dictionary recreation or the object is
very simply done.

You can also generate ALT TABLE statements from the definitions of tables in the dictionary.
This feature is task-driven: if it is necessary, in order to achieve the alteration you want, several
ALTER statements will be generated automatically.

Security and Authorizations
When you want to grant or revoke privileges to and from users you can generate GRANT and
REVOKE statements, automatically, from the dictionary.

This is particularly useful if you have dropped a DB2 database or SQL/DS dbspace (and
everything that’s inside it) because you will, usually, need to re-GRANT many authorizations
when the objects are re-created.

Application Maintenance
When changing application programs it is often necessary to make careful trade-offs and technical
decisions which require precise answers to queries of what other applications are affected.

You can obtain the information you need to make such decisions from the dictionary. For
example, you can find out which programs use a particular column in a particular table if that
column is going to change in some way.

When application programs need to change you can change the dictionary definition and
regenerate data structures and DB2 data declaration statements easily.

1 Introduction

13

Dynamic SQL Services
Dynamic SQL Services enable you to dynamically submit SQL statements to DB2 or SQL/DS,
and receive the results, from within Manager Products.

Any SQL statement that can be dynamically prepared for execution can be submitted.

You can submit SQL statements which have been previously generated from the dictionary by our
Data Definition Language generator.

SQLCODEs and SQL/DS HELP text is displayed in response to unsuccessful statements.

You can interrogate your relational environment by submitting SQL SELECT statements and
receiving the Result Tables the statements generate.

Implementation and maintenance of your DB2 or SQL/DS environment can therefore be carried
out in the minimum amount of time.

For example, you could interrogate a table in DB2 or SQL/DS prior to using our DDL generator to
generate an SQL ALTER statement, and then submit that statement using Dynamic SQL Services.

Refer to Chapter 7, "Dynamic SQL Services," on page 107 for details of Dynamic SQL Services.

Import Facilities
Our import facilities enable you to import information about DB2 or SQL/DS objects onto the
Workbench Translation Area (WBTA) and to use that information to populate the Corporate
Dictionary/Repository. The major benefits of the import facilities are that:

• Manager Products users who have not documented their DB2 or SQL/DS environment in
the dictionary can do so in the minimum amount of time

• Users who have documented their environment can ensure that their existing documentation
is complete and accurate by reconciling it with information imported from DB2 or SQL/DS.

Having documented your DB2 or SQL/DS environment in the dictionary you can use Manager
Products’ CASE tools to analyze, maintain, and improve that environment.

Powerful dictionary management commands enable you to alter members generated from
imported information so that they reflect any maintenance you intend to carry out in DB2 or
SQL/DS.

The Design Diagramming and Database Design tools enable you to analyze the dictionary in order
to produce a normalized logical design from which the dictionary can be populated with a first-cut
physical design. The import facilities therefore provide the first step in the reengineering process.

Using our generators for Data Definition Language and for source languages you can generate
SQL, COBOL, PL/I, and ASSEMBLER from dictionary members.

Dynamic SQL Services enable you to dynamically submit generated SQL statements to DB2 or
SQL/DS, and receive the results, from within Manager Products.

ASG-Manager Products Relational Technology Support: SQL/DS

14

Generated COBOL, PL/I, and ASSEMBLER can be transferred to an external file for inclusion in
your application programs.

Summary
The system life cycle and how you can use the tools we provide to support your use of DB2 and
SQL/DS can be summarized as follows:

• The design phase involves:

— Building Entity (top down analysis) and/or Userview (bottom-up analysis) models,

— Generating, automatically, a logical design (3NF relational schema)

— Generating a first cut physical design in the dictionary.

• The physical design is completed and documented in the dictionary and implementation
involves exporting SQL statements generated from it to your DB2 or SQL/DS environment

• The maintenance phase involves:

— Interrogating and reporting from the dictionary in order to obtain information about the
system

— Generating ALTER statements from the dictionary to reflect changing requirements
for tables

— Supporting security and authorizations in the database.

Benefits

Introduction
The corporate Dictionary/Repository is a central repository of re-usable information about the
corporation, its data, and systems. The tools that we provide are productivity tools for database
design and application development.

The benefits that you can gain from use of the Corporate Dictionary/Repository and the
productivity tools based upon it, are described in this section.

A Shared and Re-usable Corporate Model
The data used by most organizations changes very little in relation to the rate of change of the
application systems.

Using the Corporate Dictionary/Repository you can create a central data model in which each data
element used by the corporation is defined:

• Once only,

• In a consistent manner,

• Independent of any particular DBMS/application.

1 Introduction

15

Using the import facilities we provide, you can populate the Corporate Dictionary/Repository in
the minimum amount of time.

Using the generators we provide, you can develop and maintain several DBMS applications,
automatically, by exporting the required database objects and program code from the central data
model.

For example, if you use an IMS database for applications with high transaction rates and extract
data from the IMS database to DB2, the dictionary helps you control copy management.

The central data model is the point of integration, control, and central reference shared between:

• Your development teams and the end users and management

• Design, generation, and other productivity tools.

A corporate model is created when you document additional objects related to the business of the
enterprise, such as:

• Business plans, requirements, and rules

• Organizational units (branches and departments, for example).

So, the Corporate Dictionary/Repository becomes a communication tool to help you solve the
communications problems between DP personnel, end-users, and management: it provides a
single source of all information across the full spectrum of your organization’s applications. The
fact that it is used actively in automated and semi-automated process throughout the life cycle,
ensures that its contents are reliable.

When combined with the use of a sound naming strategy, use of a Corporate
Dictionary/Repository will enable your organization to achieve a common conceptual view of
your information resource and vastly improve understanding and communications about that
system.

The benefits include:

• Accurate and up-to-date documentation is readily available in one safe place

• Centralized information about your organization and its systems: multiple computer
systems, locations, DBMSs, databases, etc.

• Fast and accurate impact analysis at a corporate and local level. For example, you can find
out what the impact of a proposed change will be on your:

— Existing systems: Reports, Programs, and Databases

— Developing systems

— Organizational units (departments, branches, etc.).

ASG-Manager Products Relational Technology Support: SQL/DS

16

• A data model which is independent of the physical implementation. You can tune the
physical design implementation without losing the logical (and therefore, theoretically the
best) design, from which it was derived.

• A data model that can be reused for design work across applications and life cycles

• Elimination of data duplication across applications because the dictionary helps developers
to find out what data already exists

• Data sharing can be promoted and controlled

• Normalized data structures that minimize redundancy and maximize flexibility to future
change

• Standards can be introduced into the system development life cycle. For example, the
dictionary helps you to establish and foster meaningful naming standards and, because the
data model is driving all of the application systems, throughout the organization.

• Design information such as entity relationship diagrams and Entity Models can be
documented and is readily available for re-use.

All of the above reduce the:

• Time,

• Resource,

• Confusion, and

• Expense

involved in building the information systems required to satisfy your organizations information
needs. They help end-users, DP personnel, and management to understand each other and do a
better job.

Automated Design
A poorly designed database will result in time consuming and expensive software revisions when
business requirements change.

The benefits of creating a logical database design that is independent of the chosen DBMS, has
become apparent as the use of databases and the associated DBMSs has increased and information
systems become larger and more complex.

By providing a detailed and clear model of the systems information requirements, a logical
database design improves communications between analysts and end-users. It ensures that the
fundamental data structures required to support the end-users information needs are identified. It
enables you to understand the whole business, not just one application.

1 Introduction

17

The value of a logical database design depends on several factors:

• Whether it describes all the types of data (data elements) that will be required in the
database

• Whether it accommodates all the end users’ requirements of the database (the userviews)

• Whether, when implemented physically, it minimizes the duplication of the data values that
will be included in the database

• How well it can accommodate new requirements of the database and the addition of further
types of data, as the database and associated applications evolve.

The Corporate Dictionary/Repository provides storage, documentation, and cross-referencing
facilities for the definition of data elements and userviews.

The amalgamation, analysis, and structuring of all the data elements and userviews to produce a
logical database design model that satisfies the requirements for:

• Minimal duplication of data values in the database,

• Optimal stability with database evolution, and

• Referential Integrity

is all done automatically by our design tool. If done manually, these tasks are time-consuming,
complex, and error-prone.

Using our design tool the database designer is free to devote himself/herself to aspects of the
design process that require human judgment:

• Evaluation of the logical model and userviews for omissions and errors

• The physical implementation of the model in the database

• Weighing the advantages and disadvantages of adjusting the physical model to match the
available hardware and meet particular performance requirements.

So, your database designers can:

• Build and verify logical and physical models of current and potential information delivery
systems

• Design and implement optimized database structures reflecting current and potential needs

• Exploit and achieve maximum benefit from relational technology.

Again, all of the above reduce the time and expense involved in design and implementation of the
systems required to satisfy your organizations information needs. The databases produced in such
an environment are well designed and therefore responsive to the need for database evolution.

Conclusion
Using our tools your organization can respond rapidly to change and reduce the cost of application
systems design and implementation.

ASG-Manager Products Relational Technology Support: SQL/DS

18

Although your organization has to invest money and resources in the building-up and maintaining
of the Corporate Dictionary/Repository, using it you can achieve:

• Consistency across systems

• Understanding of systems despite changing human resource and consequent improvements
in maintenance and development

• Better quality and more reliable systems.

Through automation of the major parts of the development life cycle, you can progress from
pictures (on the Intelligent Workstation) to practical solutions (the actual database and the
applications based upon it) relatively fast.

You are using one product set that exploits the best of PC and mainframe technology. You don’t
have to become familiar with several different products from several different vendors.

19

2 2What Do You Want to Do?

Introduction

The purpose of this chapter is to direct users who are unfamiliar with Manager Products to the
documentation relevant to the task they wish to perform. For each task the relevant section and
page reference in this manual is given.

ASG Support for Your SQL/DS Environment

SQL/DS Database Design

Producing Output Describing the SQL Design

Topic Page

SQL/DS Database Design 19

SQL/DS Dictionary Definition 20

SQL/DS Object Generation 21

Dynamically Submitting SQL Statements 22

Importing Information about SQL/DS Objects 22

Topic Page

SQL LIST TABLES 198

SQL LIST CYCLES 197

SQL REPORT 240

SQL PLOT CLUSTER 200

SQL PLOT REFERENTIAL-STRUCTURES 203

ASG-Manager Products Relational Technology Support: SQL/DS

20

Generating and Populating SQL Dictionary Definitions of Specified Member Type

Generating and Populating SQL-TABLE Members

SQL/DS Dictionary Definition

Documenting an SQL/DS Dictionary Schema

SQL/DS Object Definition

Topic Page

Generating and Populating SQL-TABLE Members 20

Generating and Populating SQL-INDEX Members 211

Generating and Populating SQL-VIEW Members 212

Combining SQL POPULATE Command Options 216

Topic Page

Generating and Populating SQL-TABLE Members 209

Suppressing Support for Referential Integrity 210

Generating References to Dbspaces 210

Topic Page

SQL/DS Object Definition 20

Documenting SQL/DS Security Information 88

Naming Conventions for SQL/DS Members 89

Processing Your SQL/DS Members 92

Topic Page

Documenting the Columns of SQL/DS Tables and Views 84

SQL-DBSPACE 184

SQL-INDEX 192

SQL-PRIVILEGE 229

SQL-TABLE 245

SQL-USER 259

SQL-VIEW 262

2 What Do You Want to Do?

21

SQL/DS Object Generation

Generating SQL Statements and SQL/DS Host Language Data Structures

Generating Tailored SQL Statements and SQL/DS Host Language Data Structures

Topic Page

SQL ACQUIRE 172

SQL CREATE 182

SQL SYNONYM 244

SQL DROP 187

SQL ALTER 173

SQL COMMENT and SQL LABEL 180

SQL GRANT and SQL REVOKE 190

SQL PRODUCE 236

Documenting the Columns of SQL/DS Tables and Views 84

SQL SIZE 243

Defining an AS Clause 277

Submitting Generated Output to Your Relational Environment 97

Generating Tailored SQL Statements and SQL/DS Host Language Data Structures 21

Topic Page

Displaying Internal Diagnostic Output 100

Generating Object Names and External Names from Aliases 101

Generating SQL CREATE, LABEL ON, and COMMENT ON Statements from One
Member at the Same Time

102

Generating a Host Language Indicator Structure 103

Tailoring DATE and TIME Character Field Lengths 104

ASG-Manager Products Relational Technology Support: SQL/DS

22

Dynamically Submitting SQL Statements

Importing Information about SQL/DS Objects

Topic Page

ISQL 149

Creating and Populating a Table 115

Inserting Rows into a Table 117

Importing Information and Assigning it to Command Variables 118

Submitting any SQL Statement That Can be Prepared 120

Creating Your Own HELP Text 122

Topic Page

EXTRACT SQL 143

RECONCILE 157

PREVIEW 153

POPULATE 151

Tailoring Import Commands 128

2 What Do You Want to Do?

23

Figure 1 Overview Diagram of SQL/DS Database Design

Reading from top to bottom, this diagram represents the support provided for SQL/DS at the
different stages of the SQL/DS database design process. It shows the commands used at each stage
to cause data to be input to the Workbench Design Area (WBDA), processed within it, or output
from it. The contents of the dictionary and WBDA, and the outputs from the SQL commands are
also shown.

WORKBENCH DESIGN AREA
Composite View Of Dataviews

Normalized relational schema

Relation

DESIGN

SQL Design

SQL Table

SQL LIST,
PREVIEW

PLOT, REPORT
POPULATE

Reports/graphics

LIST, REPORT, PLOT, PREVIEW

POPULATE

homonym/synonym
design audit
relational representation

MERGE

DICTIONARY

VIEWSETS
ENTITIES
USERVIEWS

SQL TABLES,
INDEXES, VIEWS

SQL POPULATE

Reports/graphics
SQL design
SQL definitions

SQL LIST,
PREVIEW,
REPORT, PLOT

ASG-Manager Products Relational Technology Support: SQL/DS

24

25

3 3SQL/DS Database Design

Introduction to SQL/DS Database Design

Overview
There are two major stages of SQL/DS database design in which ASG-DesignManager
participates:

• Identifying the data and functions required to support a particular application, or several
interrelated applications, and determining how that data is to be stored

• Deciding on the operational aspects such as physical storage and performance requirements.

SQL/DS provides data consistency among tables through referential constraints. The enforcement
of referential constraints, called referential integrity, ensures that all references from one table to
another are valid. Referential integrity spans both stages of SQL/DS database design. It involves:

• Determining the primary keys and foreign keys for tables

• Deciding the referential constraints on the delete rules for the tables

• Defining dbspaces containing referential structures.

You can automate much of the SQL/DS database design procedure as follows:

• Define your data in the dictionary as userview and entity models, containing USERVIEW
and ENTITY members (collectively known as data-views)

• Create a composite view of the data in the Workbench Design Area (WBDA) by moving
data in from the models, using the MERGE command

• Create a relational schema in the WBDA, by using the DESIGN command both to
normalize the data to first, second, or third normal form, and to generate relations from the
normalized data

• Evaluate the relational schema, using the ASG-DesignManager PLOT and REPORT
commands

• Generate the SQL design in the WBDA from the relational schema, using any of the SQL
LIST, SQL PLOT, SQL REPORT, SQL PREVIEW, or SQL POPULATE commands. The
SQL design consists of SQL tables, with their primary and foreign keys, as well as table
indexes and views.

• Evaluate the tables in the SQL design, using output from the SQL LIST, SQL PLOT, and
SQL REPORT commands

ASG-Manager Products Relational Technology Support: SQL/DS

26

• Use the output from the SQL LIST CYCLES and PLOT REFERENTIAL-STRUCTURES
commands to help plan which dbspaces to use for storing the tables and which referential
constraints to be used with the delete rules for the tables

• Generate (in the WBDA) and inspect dictionary definitions of SQL-TABLE, SQL-INDEX,
and/or SQL-VIEW members, using the SQL PREVIEW command. In addition, a dictionary
SYSTEM member can be defined containing a list of all the other generated dictionary
members.

• If the PREVIEWed definitions are satisfactory, then populate the dictionary with the
definitions, using the SQL POPULATE command

• Complete the physical design of the SQL/DS database by adding operational/performance
information to the dictionary definitions.

This convention also applies to indexes and views.

Note:
If you wish, you can generate SQL CREATE TABLE statements straight from the WBDA, by
using the PRODUCE SQL command after you have generated the relational schema. However,
referential integrity is not supported by this command.

Refer to "Designing a SQL/DS Database" on page 29 for a detailed description of the SQL/DS
database design process.

Support for Referential Integrity
SQL/DS provides data consistency among tables through referential constraints. The enforcement
of referential constraints, called referential integrity (RI), ensures that all references from one table
to another are valid.

SQL/DS uses the primary keys and foreign keys in SQL tables to enforce RI.

ASG-DesignManager supports RI throughout the SQL/DS database design process. The support
includes:

• Determining the primary keys and foreign keys for the tables

• Helping you choose the referential constraints to be used with the delete rules for the tables

• Helping you define dbspaces containing referential structures.

SQL primary and foreign keys are generated when the relations in the relational schema are
converted to tables in the SQL design. The foreign key relationships in which each table
participates are also derived.

When you use the SQL PREVIEW or the SQL POPULATE command to generate SQL-TABLE
dictionary definitions from the tables in the Workbench Design Area (WBDA), they automatically
include primary key keywords and foreign key clauses to support RI unless you specify the
keyword NO-RI in the command to indicate that those clauses must be suppressed.

3 SQL/DS Database Design

27

When relevant, a foreign key clause is generated for each foreign key relationship in which the
table participates as a dependent table. It includes each of the columns comprising the foreign key.
If the relationship is of the domain type, each column in the foreign key is matched with the
corresponding column in the primary key of the parent table. The name of the parent table is
included in each foreign key clause.

The output from the SQL PLOT and SQL REPORT commands shows the relationships which
each selected table has with other tables in the WBDA. You can use the output from these
commands to help you identify the referential structures of the tables, and to plan the dbspaces in
which the SQL tables should be stored.

The report outputs can help you design the referential constraints for the delete rules which apply
to the SQL tables, but before you can specify delete rules you need to know the referential
structure to which a table belongs and to be aware of any cycles.

Introduction to Referential Structures and Cycles
A referential structure may be described as a set of tables and relationships in which each table is a
parent or dependent of itself or of another table in the set. Each table that is a parent or dependent
is part of exactly one referential structure.

A cycle may be described as a path of relationships which connects a table to itself, in which the
arrows representing the relationships all flow in the same direction. You have identified a cycle if
you find the same table twice while tracing the dependent tables in a referential structure. The
presence of a cycle in a referential structure affects the specification of delete rules, since a table
must not be delete-connected to itself.

Awareness of referential structures and cycles is vitally important when making your final
decisions about the delete rules to apply to particular tables and about the dbspaces in which the
tables are to be stored.

The output of the SQL PLOT REFERENTIAL-STRUCTURES command displays the referential
structures present in the SQL design generated in the Workbench Design Area. The SQL LIST
CYCLES command lists all cycles and, for each, the tables comprising the cycle.

Once you have decided on delete rules, you can specify them in each SQL-TABLE member by
updating the FOREIGN-KEY clause.

Refer to "SQL LIST CYCLES" on page 197 for details of the SQL LIST CYCLES command.

Refer to "SQL PLOT REFERENTIAL-STRUCTURES" on page 203 for details of the SQL PLOT
REFERENTIAL-STRUCTURES command.

ASG-Manager Products Relational Technology Support: SQL/DS

28

Features to Support SQL/DS
The relational schema in the Workbench Design Area (WBDA) is automatically converted to a
SQL design containing SQL tables, indexes, and views when any of the following commands is
entered:

• SQL LIST

• SQL REPORT

• SQL PLOT

• SQL PREVIEW

• SQL POPULATE.

SQL referential integrity is fully supported.

The SQL LIST TABLES command produces a list of some or all of the tables in the SQL design
generated in the WBDA.

The SQL LIST CYCLES command produces a list of all the cycles found in the design and, for
each, the tables comprising the cycle.

The SQL REPORT command shows, for each selected table in the WBDA, the columns
comprising the table, the dependencies represented by the table, and any other tables to which it is
related.

The SQL PLOT CLUSTER command shows, for each selected table in the WBDA, a diagram in
cluster form of its relationships with other tables and a matrix of all the tables in the WBDA,
showing all relationships which exist between them.

The SQL PLOT REFERENTIAL-STRUCTURES command produces an overview plot of the
referential structures in the WBDA.

Once the SQL design has been generated, you can generate dictionary definitions for SQL tables,
indexes, and views. The SQL PREVIEW command enables you to preview the generated SQL
dictionary definitions before populating the dictionary with them.

The SQL POPULATE command automatically populates the dictionary with the following
member types (if you have the optional SQL/DS Definition facility installed):

• SQL-TABLE

• SQL-INDEX

• SQL-VIEW

• SYSTEM.

You can also use the PRODUCE SQL command, if you want to generate SQL CREATE TABLE
statements directly from the relations in the relational schema.

3 SQL/DS Database Design

29

Designing a SQL/DS Database

Creating Entity and Userview Models
Having identified the data and functions needed to support a particular application, or several
inter-related applications, you begin the SQL/DS database design process by defining your data in
the dictionary. The definitions are in the form of:

Entity Models. Data models composed of ENTITY members in which data elements are defined
as the attributes of entities and relationships are defined between the entities and

Userview Models. Data models composed of USERVIEW members in which dependencies
between data elements are defined which satisfy the requirements of the database end users.

Entities and userviews are collectively known as data-views.

You should be careful to avoid homonyms and synonyms when naming your data elements.
USERVIEW and ENTITY members should refer to validly named data elements.

Generating a Relational Schema
After you have created your entity and userview models in the dictionary, you can create a
relational schema. The process of creating a relational schema is described below.

You use the MERGE command to move data from the dictionary models into the Workbench
Design Area (WBDA) to build up a single composite view of the data (consisting of functional,
multivalued, and domain dependencies).

Next, you use the DESIGN command to:

• Normalize the dependencies to first, second, or third normal form (1NF, 2NF, or 3NF)

• Identify potential keys and generate the relations of the relational schema.

How far you wish to normalize the data depends on the needs of your installation; you can
generate a first-cut SQL design from data in first, second, or third normal form.

The relational schema consists of a set of relations, each containing a key and usually some
non-key (non-prime) data elements. Each relation is identified by a unique WBDA number.

Using the output of the PLOT and REPORT commands, you can evaluate the relational schema to
ensure that it satisfies your data access requirements. If not, you can modify the input, re-MERGE
and re-DESIGN the relational schema in iterative fashion until the schema does meet your
requirements. If you have a large amount of data to be evaluated, it is easier to report it a bit at a
time, so that you can analyze several reports separately, rather than analyze one large one.

Once you are satisfied with the relational schema, you can generate a SQL design from it in the
WBDA by issuing any ASG-DesignManager SQL command. Each relation is mapped into a table
which is assigned the name and WBDA number of the relation from which it is generated. It is
important to make sure that every relation is named, because, subsequently, dictionary definitions
will not be generated from unnamed tables.

ASG-Manager Products Relational Technology Support: SQL/DS

30

If you want to, you can use the PRODUCE SQL command at this point to generate SQL CREATE
TABLE statements straight from the WBDA.

Generating the SQL Design
The SQL design comprises tables generated directly from the relations in the relational schema in
the Workbench Design Area (WBDA). It is stored in the WBDA along with the relational schema.

Each table is assigned the name and WBDA number of the relation from which it is generated.
Usually, each data element in the relation maps into a column of the table with the same name. In
addition, ASG-DesignManager identifies the primary key and any foreign keys in each table (from
the corresponding keys of the relation) for referential integrity, as indicated in the correspondence
table below, and also identifies the foreign key relationships in which the table participates.

You should issue the SQL LIST, SQL PLOT, or SQL REPORT command to generate and report
the SQL design for the first time. Using the output from these commands, you can examine and
evaluate the tables of the generated design. You should ensure that the contents of the tables and
their relationships with each other satisfy your database access requirements before you start to
generate dictionary definitions from the tables.

You can also generate the SQL design by entering the SQL PREVIEW or SQL POPULATE
commands, but these commands do not provide a detailed report of the tables in the SQL design.

The following table shows the correspondence between the relations in the relational schema and
the tables in the SQL design.

The relational schema contains a number of different types of associations, but in SQL/DS there is
only one type of foreign key relationship.

When comparing graphical displays of the relational schema and the SQL design, you will notice
that the direction of an association in the relational schema is opposite to that of the corresponding
relationship in the SQL design.

Relational Schema SQL Design

Relation name, WBDA number Table name and WBDA number

Data elements in relation Columns in table

Set of one or more non-prime data elements in
role relation (where a domain dependency
holds from key of relation to the set of
non-prime data elements)

Dropped from table (because, in each row, the
set of values would be identical to that of the set
of data elements comprising the primary key)

Primary key of relation Primary key of table

Foreign key of relation (except in the case of a
domain association; see below)

Foreign key of table (except in the case of a
domain association; see below)

Foreign key, hierarchical-one, and domain
associations

Foreign key relationships

3 SQL/DS Database Design

31

In a relational schema, all foreign key, hierarchical-one, and domain associations are directed from
a source relation containing a foreign key to a target relation containing the corresponding primary
key. That is, the primary key of the target relation is a non-key set of data elements in the source
relation.

In SQL a foreign key relationship is directed from a parent table containing a primary key to a
dependent table containing a foreign key. The foreign key is the same set of data elements as the
foreign key of the corresponding source relation except in the case of a domain association, where
the primary key of the dependent table is itself the foreign key to the parent table.

Reporting the SQL Design
Use the SQL LIST, SQL PLOT, and SQL REPORT commands to produce listings, plots, and
reports of the tables in the SQL design.

Any of these commands will cause the relational schema to be converted to a SQL design, if one
does not exist already.

You should use the reports to check that the following meet your database access requirements:

• Table columns

• Table primary keys

• Table foreign keys

• Relationships between tables.

If you find that tables do not contain the columns or keys that you expected, or that tables are not
related to each other in the way that you want them to be, you can:

• Modify the ENTITY and USERVIEW members in the dictionary

• Re-MERGE and re-DESIGN the data to produce a new relational schema

• Generate a new SQL design.

You can repeat this process as often as you want until the results are satisfactory.

The outputs from these commands show how tables in the SQL design are related to each other.
Furthermore, they show the referential structures and cycles present in the design. You will need
this information to plan the dbspaces in which the tables will be stored. You will also need it when
you design the referential integrity constraints for the tables’ delete rules, as you refine the SQL
design.

Populating the Dictionary with SQL Members
When you are satisfied with the SQL tables in the Workbench Design Area (WBDA), you can
begin generating SQL-TABLE, SQL-INDEX, and SQL-VIEW dictionary member definitions.

You can also generate a SYSTEM dictionary definition containing a list of the names of all the
SQL members generated by the same command.

ASG-Manager Products Relational Technology Support: SQL/DS

32

By now you should be at a sufficiently advanced stage in your design process for all the tables in
the WBDA to be named (that is, by use of the NAME command to name the relations in the
relational schema). ASG-DesignManager will not generate dictionary definitions from unnamed
tables.

You should first issue a SQL PREVIEW command. This generates and reports SQL dictionary
definitions from the SQL design in the WBDA without adding them to the dictionary, so that you
can first check them. Like the earlier stages of the design process, previewing can be iterative -
you can keep generating a new SQL design in the WBDA and previewing the dictionary
definitions until you are satisfied with them.

When you are satisfied with the definitions, you then can use the SQL POPULATE command to
populate the dictionary with them. SQL PREVIEW and SQL POPULATE generate exactly the
same definitions, so by previewing the definitions you already know what will go into the
dictionary.

In the commands, you can specify that dictionary definitions are to be generated either from all the
SQL tables in the WBDA or from a selection of tables indicated by name or by WBDA number.
You can also specify that the tables are to be processed in alphanumeric order of table name.

When you generate SQL-TABLE members, the PRIMARY-KEY keywords and foreign key
CONSTRAINT clauses needed to support referential integrity (RI) are generated automatically
unless you specify the keyword NO-RI in the command to indicate that they are to be suppressed.

You can also start to assign tables to dbspaces at this stage. You may choose to have one dbspace
per table, or to store a whole referential structure in one dbspace, or to have one or more referential
structures spanning dbspaces.

The final decisions about how tables will be stored cannot be made until you have ascertained the
referential structures and cycles to which individual tables belong. This information is provided by
output from the SQL PLOT REFERENTIAL-STRUCTURES and SQL LIST CYCLES
commands.

With the SQL PREVIEW or POPULATE command, you can generate a SQL-VIEW member for
each SQL-TABLE generated so that users do not access the SQL tables directly.

In addition, a SQL-INDEX member, representing a primary key index, can be generated for each
selected table.

You can tailor the format of the generated dictionary definitions by specifying, in the SQL
PREVIEW or POPULATE command, the name of a predefined FORMAT member to be used for
formatting, provided that the optional User Formatted Output facility is installed.

Refer to "Introduction to Referential Structures and Cycles" on page 27 for a discussion of
referential structures and cycles.

3 SQL/DS Database Design

33

Examples of the SQL/DS Database Design Process

Introduction to Examples
In these two examples, you are taken through the SQL design process and the method of refining
the design. Both examples show specifically how domain associations in the relational schema are
converted into SQL foreign key relationships.

The two examples are called:

• The Department Model

• The Parts Model.

In both examples, when displaying the relational schema the convention followed is that
associations are directed from the source relation (containing the foreign key) to the target relation
(containing the corresponding primary key); when displaying the SQL design the convention
followed is that relationships are directed from the parent table to the dependent table, that is, in
the reverse direction.

Department Model Example
The Department Model example shows how to define the relationships between employees
(including managers), their departments and the offices in which the departments are situated.

Department Model Example: The Entity Model
This example describes three entities in an organization; they represent employees, departments,
and offices, and their interrelationships, as shown in the following diagram.

Figure 2 Department Model: Entities and their Interrelationships

DEPARTMENT

EMPLOYEE

OFFICE

Has Many
Employees

Has One
Manager

Accommodates Many
Departments

ASG-Manager Products Relational Technology Support: SQL/DS

34

You begin by defining the ENTITY members in the dictionary, and calling them
EMPLOYEE-ENT, MANAGER-ENT, DEPARTMENT-ENT, and OFFICE-ENT, as follows:

EMPLOYEE-ENT
ENTITY
IDENTIFIER IS EMPLOYEE-NO
ONE-ATTRIBUTES ARE EMPLOYEE-NAME
SUB-ENTITIES ARE MANAGER-ENT

MANAGER-ENT
ENTITY
IDENTIFIER IS MANAGER-NO

DEPARTMENT-ENT
ENTITY
IDENTIFIER IS DEPARTMENT-NO
ONE-ATTRIBUTES ARE DEPARTMENT-NAME
ONE-ASSOCIATION TO MANAGER-ENT
MULTI-ASSOCIATION TO EMPLOYEE-ENT

OFFICE-ENT
ENTITY
IDENTIFIER IS OFFICE-LOCATION
ONE-ATTRIBUTES ARE OFFICE-NAME
MULTI-ASSOCIATION TO DEPARTMENT-ENT

The entity EMPLOYEE-ENT represents an employee. It has:

• The identifier (key attribute), EMPLOYEE-NO

• A one-attribute (non-prime attribute), EMPLOYEE-NAME

• A sub-entity, MANAGER-ENT.

The sub-entity MANAGER-ENT also represents an employee, but one who plays the 'role' of a
manager. It has the identifier, MANAGER-NO. The domain (or set of all valid values) of
MANAGER-NO is a subdomain or subset of the domain of EMPLOYEE-NO, reflecting the fact
that every manager is also an employee.

Thus, each employee is identified by an employee number, has a name and may be a manager.

The entity DEPARTMENT-ENT represents a department. It has:

• The identifier (key attribute), DEPARTMENT-NO

• A one-attribute (non-prime attribute), DEPARTMENT-NAME

• A one-association (one-relationship) to the entity MANAGER-ENT

• A multi-association (many-relationship) to the entity EMPLOYEE-ENT.

That is, each department is identified by a department number, has a name and one manager, but
may contain many employees.

3 SQL/DS Database Design

35

The entity OFFICE-ENT represents an office location. It has:

• The identifier (key attribute), OFFICE-LOCATION

• A one-attribute (non-prime attribute), OFFICE-NAME

• A multi-association (many-relationship) to the entity DEPARTMENT-ENT.

That is, each office is identified by an office location, has a name, and can accommodate many
departments.

Department Model Example: The Composite View
If the entities EMPLOYEE-ENT, DEPARTMENT-ENT, and OFFICE-ENT are merged into the
Workbench Design Area (WBDA), using the MERGE command, the following dependencies are
derived.

You can now normalize the dependencies of the composite view, identify potential keys, and
generate relations, using the DESIGN command. The generated relations constitute the relational
schema.

Refer to the ASG-DesignManager User’s Guide for details of how dependencies are derived from
ENTITY definitions.

Department Model Example: Contents of the Relations
The relational schema generated by the DESIGN command for the Department Model example
contains six relations representing the dependencies in the Workbench Design Area. The
dependencies were generated from the entities, EMPLOYEE-ENT, MANAGER-ENT,
DEPARTMENT-ENT, and OFFICE-ENT.

The following table shows the data elements in each relation. The names of data elements
comprising the key of each relation are shown in capitals. The names of the non-prime data
elements are shown in lower case.

Table 1 Department Model: Derived Dependencies

Dependency Derived from Entity

EMPLOYEE-NO EMPLOYEE-NAME EMPLOYEE-ENT

MANAGER-NO EMPLOYEE-NO EMPLOYEE-ENT

DEPARTMENT-NO DEPARTMENT-NAME DEPARTMENT-ENT

DEPARTMENT-NO MANAGER-NO DEPARTMENT-ENT

DEPARTMENT-NO EMPLOYEE-NO DEPARTMENT-ENT

OFFICE-LOCATION OFFICE-NAME OFFICE-ENT

OFFICE-LOCATION DEPARTMENT-NO OFFICE-ENT

>

ASG-Manager Products Relational Technology Support: SQL/DS

36

.

 Department Model Example: Associations Between the Relations
The diagram below shows the six relations with their respective primary key data elements and the
foreign key associations, domain associations, and hierarchical-one associations in which they
participate.

Figure 3 Department Model: Associations of the Relations

Department Model Example: Description of Relations
The contents of the relations are described below, including, for each, its key, its non-prime data
elements (if any) and any associations in which it participates as the source relation.

MANAGER is a role relation. It has:

• The key, MANAGER-NO

• A non-prime data element, employee-no

• A domain association leading from it to the target relation EMPLOYEE, via the domain
dependency from its key MANAGER-NO to the key EMPLOYEE-NO of the target
relation.

Table 2 Department Model: Relations and their Data Elements

Relation Name Data Elements Comprising Relation

EMPLOYEE EMPLOYEE-NO employee-name

MANAGER MANAGER-NO employee-no

DEPARTMENT DEPARTMENT-NO department-name manager-no

DEPARTMENT-MEMBER DEPARTMENT-NO EMPLOYEE-NO

OFFICE OFFICE-LOCATION office-name

OFFICE-DEPARTMENT OFFICE-LOCATION DEPARTMENT-NO

DEPARTMENT-NO
EMPLOYEE-NO

DEPARTMENT-NO

OFFICE-LOCATION
DEPARTMENT-NO

DEPARTMENT-MEMBER

OFFICE-LOCATION

OFFICE
OFFICE-DEPARTMENT

MANAGER-NO

MANAGER

EMPLOYEE-NO>
DEPARTMENT

EMPLOYEE

3 SQL/DS Database Design

37

DEPARTMENT is an FD relation. It has:

• The key, DEPARTMENT-NO

• Non-prime data elements, department-name, and manager-no

• A foreign key association leading from it to the target relation MANAGER, where its
non-prime data element, manager-no, is also the key MANAGER-NO of MANAGER.

OFFICE-DEPARTMENT is an MVD (all-key) relation. It has:

• A composite key consisting of the prime data elements, OFFICE-LOCATION and
DEPARTMENT-NO

• A hierarchical-one association leading from it to the target relation DEPARTMENT. The
prime data element, DEPARTMENT-NO, of OFFICE-DEPARTMENT is also the key of
DEPARTMENT.

• A hierarchical-one association leading from it to the target relation OFFICE. The prime data
element, OFFICE-LOCATION, of OFFICE-DEPARTMENT is also the key of OFFICE.

DEPARTMENT-MEMBER is an MVD (all-key) relation. It has:

• A composite primary key comprised of the data elements, DEPARTMENT-NO and
EMPLOYEE-NO

• A hierarchical-one association leading from it to the target relation DEPARTMENT. The
prime data element, DEPARTMENT-NO, of DEPARTMENT-MEMBER is also the key of
DEPARTMENT.

• A hierarchical-one association leading from it to the target relation EMPLOYEE. The prime
data element, EMPLOYEE-NO, of DEPARTMENT-MEMBER is also the key of
EMPLOYEE.

EMPLOYEE is an FD relation. It has:

• The key, EMPLOYEE-NO

• A non-prime data element, employee-name

• No associations leading from it.

OFFICE is an FD relation. It has:

• The key, OFFICE-LOCATION

• A non-prime data element, office-name

• No associations leading from it.

ASG-Manager Products Relational Technology Support: SQL/DS

38

Department Model Example: Contents of the Tables
You can now generate the SQL design from the relational schema, by issuing any of the following
commands:

• SQL LIST

• SQL REPORT

• SQL PLOT

• SQL PREVIEW

• SQL POPULATE.

The SQL design generated from the relations EMPLOYEE, MANAGER, DEPARTMENT,
DEPARTMENT-MEMBER, OFFICE, and OFFICE-DEPARTMENT contains six tables.

When a table in the SQL design is generated from a relation in the relational schema, the table
takes the name and Workbench Design Area number of its source relation. In general, all of the
data elements of the relation become the columns of the table, where the columns that correspond
to the key of the relation become the primary key of the table.

But in this example the role relation MANAGER is an exception. Its non-prime data element
employee-no is omitted from the table because the set of valid values of MANAGER-NO is a
subset (subdomain) of the set of valid values of EMPLOYEE-NO. If employee-no was included,
each row of the table would contain the same value for both MANAGER-NO and employee-no.

The six tables in the generated SQL design are shown below. The columns comprising the primary
key of the table are shown in capital letters. The non-key columns of the table are shown in lower
case.

 Department Model Example: Relationships Between the Tables
The diagram below represents the generated SQL design. It displays all six tables with their
respective primary key columns and the foreign key relationships in which they participate.

Table 3 Department Model: Contents of the Tables

Table Name Columns Comprising Table

EMPLOYEE EMPLOYEE-NO employee-name

MANAGER MANAGER-NO

DEPARTMENT DEPARTMENT-NO department-name manager-no

DEPARTMENT-MEMBER DEPARTMENT-NO EMPLOYEE-NO

OFFICE OFFICE-LOCATION office-name

OFFICE-DEPARTMENT OFFICE-LOCATION DEPARTMENT-NO

3 SQL/DS Database Design

39

Figure 4 Department Model: Relationship between the Tables

Department Model Example: Description of the Tables
EMPLOYEE is a parent table. It has:

• The primary key, EMPLOYEE-NO

• A non-prime column, employee-name

• A dependent table DEPARTMENT-MEMBER in which the primary key component,
EMPLOYEE-NO, is the foreign key to EMPLOYEE

• A dependent table MANAGER in which the primary key, MANAGER-NO, is the foreign
key to EMPLOYEE.

MANAGER is both a parent table and a dependent table. It has:

• The primary key, MANAGER-NO, which is the only column in the table

• A dependent table DEPARTMENT in which the non-prime column, manager-no, is the
foreign key to MANAGER

• A parent table EMPLOYEE. In this relationship, the primary key, MANAGER-NO, of
MANAGER is the foreign key to EMPLOYEE.

DEPARTMENT is both a parent table and a dependent table. It has:

• The primary key, DEPARTMENT-NO

• Non-prime columns, department-name, and manager-no

• A dependent table DEPARTMENT-MEMBER in which the primary key component,
DEPARTMENT-NO, is the foreign key to DEPARTMENT

• A dependent table OFFICE-DEPARTMENT in which the primary key component,
DEPARTMENT-NO, is the foreign key to DEPARTMENT

• A parent table MANAGER. In this relationship, the non-prime column, manager-no, of
DEPARTMENT is the foreign key to MANAGER.

DEPARTMENT-NO
EMPLOYEE-NO

DEPARTMENT-NO

OFFICE-LOCATION
DEPARTMENT-NO

DEPARTMENT-MEMBER

OFFICE-LOCATION

OFFICE
OFFICE-DEPARTMENT

MANAGER-NO

MANAGER

EMPLOYEE-NO<
DEPARTMENT

EMPLOYEE

ASG-Manager Products Relational Technology Support: SQL/DS

40

DEPARTMENT-MEMBER is a dependent table. It has:

• A composite primary key with DEPARTMENT-NO and EMPLOYEE-NO as the
component prime columns

• A parent table DEPARTMENT. In this relationship, the prime column,
DEPARTMENT-NO, of DEPARTMENT-MEMBER is the foreign key to
DEPARTMENT.

• A parent table EMPLOYEE. In this relationship, it is the prime column, EMPLOYEE-NO,
of DEPARTMENT-MEMBER that is the foreign key to EMPLOYEE.

OFFICE-DEPARTMENT is a dependent table. It has:

• A composite primary key with OFFICE-LOCATION and DEPARTMENT-NO as the
component prime columns

• A parent table DEPARTMENT. In this relationship, the prime column,
DEPARTMENT-NO, of OFFICE-DEPARTMENT is the foreign key to DEPARTMENT.

• A parent table OFFICE. In this relationship, it is the prime column, OFFICE-LOCATION,
of OFFICE-DEPARTMENT that is the foreign key to OFFICE.

OFFICE is a parent table. It has:

• The primary key, OFFICE-LOCATION

• A non-prime column, office-name

• A dependent table OFFICE-DEPARTMENT in which the primary key component,
OFFICE-LOCATION, is the foreign key to OFFICE.

Department Model Example: Refining the SQL Design
So far the example has illustrated how a SQL design is generated in the Workbench Design Area
(WBDA). When you enter the SQL PREVIEW or SQL POPULATE command, dictionary
definitions are generated automatically for the six SQL tables, with their respective primary keys
and foreign keys.

Once the definitions of these tables are in the dictionary you may wish to add more clauses to
them. You may also wish to refine some of the generated tables for performance reasons; for
instance, you may decide to split or combine some tables.

Let us examine the table MANAGER, which may seem strange because it has only one column. In
the example, there is an implied functional dependency from EMPLOYEE-NO (the key of the
table EMPLOYEE) to MANAGER-NO (the key of this table). Therefore, it could be useful to
merge MANAGER into EMPLOYEE, so that EMPLOYEE would contain an additional column
of manager-no.

Then each row in the table containing a value of EMPLOYEE-NO for an employee would contain
a different value of manager-no for the employee’s manager. Manager-no then would be a foreign
key because each value of manager-no would also appear (in a different row) as a value of
EMPLOYEE-NO. Thus the table EMPLOYEE would become a self-referencing table; that is, it
would be both parent and dependent in the same relationship.

This is shown in the following diagram:

3 SQL/DS Database Design

41

Figure 5 Department Model: A Self-referencing Table

The table EMPLOYEE would then become the parent of the table DEPARTMENT, where the
column manager-no in DEPARTMENT would be the foreign key to EMPLOYEE.

On the other hand, you may prefer to keep the table MANAGER, because it ensures integrity by
containing a list of valid managers. That is, when inserting a new row into the table
DEPARTMENT, the referential integrity constraints will validate the manager number by
checking it against the MANAGER table. You may also feel that MANAGER, containing a list of
valid managers, is useful in its own right; in the future you may have plans to add new attributes or
relationships to the entity MANAGER.

The final decisions about operation and performance are made by the database designer. You can
then complete the physical design of the SQL/DS database by documenting those decisions in the
relevant SQL-TABLE, SQL-INDEX, and SQL-VIEW dictionary members.

Parts Model Example
The Bill of Materials (BOM) problem (often referred to as the parts explosion problem) is one of
the most common in the manufacturing industry, arising from the need to distinguish between
large objects and the smaller objects of which they are composed.

Parts Model Example: The Entity Model
In this example, there is an entity called PART. Its relationship with other manufacturing parts is
represented as:

Figure 6 Parts Model: Interrelationships of Parts

EMPLOYEE-NO employee-name manager-no

PARTPart Is
Made Up Of
Other Parts

Part Is
Used In
Other Parts

ASG-Manager Products Relational Technology Support: SQL/DS

42

You begin by defining two ENTITY members in the dictionary, and calling them PART-ENT and
COMPONENT-ENT. You should define the subentities MAJOR-PART-ENT and
MINOR-PART-ENT as subentities of PART-ENT.

PART-ENT
ENTITY
IDENTIFIER IS PART-NO
ONE-ATTRIBUTES ARE PART-NAME, PART-PRICE, PART-QTY- IN-STOCK
SUB-ENTITIES ARE MAJOR-PART-ENT, MINOR-PART-ENT

MAJOR-PART-ENT
ENTITY
IDENTIFIER IS MAJOR-PART-NO

MINOR-PART-ENT
ENTITY
IDENTIFIER IS MINOR-PART-NO

COMPONENT-ENT
ENTITY
IDENTIFIER IS MAJOR-PART-NO, MINOR-PART-NO
ONE-ATTRIBUTES ARE ASSEMBLY QUANTITY

where the entity PART-ENT represents a part in a manufacturing assembly. It has:

• The identifier (or key attribute), PART-NO

• One-attributes (non-prime attributes), PART-NAME, PART-PRICE, and
PART-QTY-IN-STOCK

• Two sub-entities, MAJOR-PART-ENT and MINOR-PART-ENT.

The two sub-entities are also parts, but each assumes a special 'role' in the assembly of a part:
MAJOR-PART-ENT represents a larger part made up of smaller parts, and MINOR-PART-ENT
represents a smaller part used in the assembly of larger parts.

The identifier of MAJOR-PART-ENT is MAJOR-PART-NO, and the identifier of
MINOR-PART-ENT is MINOR-PART-NO. The domain (the set of all valid values) of each of
MAJOR-PART-NO and MINOR-PART-NO is a subdomain or subset of the domain of
PART-NO.

In summary, each part, is identified by a part number and has as its attributes a part name, a part
price, and a part quantity in stock. Also, a part can assume the role of a major part composed of
minor parts, or the role of a minor part used in the assembly of a major part.

The entity COMPONENT-ENT represents the composition of the components in an assembly. It
states that, for each component (that is, for each major part), there is a fixed number of each of the
minor parts used in its assembly. The entity COMPONENT-ENT has:

• A composite identifier consisting of the attributes, MAJOR-PART-NO and
MINOR-PART-NO

• A one-attribute, assembly-quantity, specifying the number of each minor part used in the
assembly of the major part.

3 SQL/DS Database Design

43

Parts Model Example: The Composite View
When the entities PART-ENT and COMPONENT-ENT are merged into the Workbench Design
Area (WBDA) using the MERGE command, the following dependencies are derived.

You can now normalize the dependencies of the composite view, identify potential keys and
generate relations, using the DESIGN command. The generated relations constitute the relational
schema.

Refer to the ASG-DesignManager User’s Guide for details of how ASG-DesignManager derives
dependencies from ENTITY definitions.

Parts Model Example: Contents of the Relations
The relational schema generated by the DESIGN command for the parts explosion problem
contains four relations representing the entities PART-ENT, MAJOR-PART-ENT,
MINOR-PART-ENT, and COMPONENT-ENT, as well as the generated dependencies in the
Workbench Design Area.

The following table shows the data elements in each relation. The names of data elements
comprising the key of each relation are shown in capitals. The names of the non-prime data
elements are shown in lower case.

Table 4 Parts Model: Derived Dependencies

Dependency Derived from Entity

PART-NO PART-NAME PART-ENT

PART-NO PART-PRICE PART-ENT

PART-NO PART-QTY-IN-STOCK PART-ENT

MAJOR-PART-NO PART-NO PART-ENT

MINOR-PART-NO PART-NO PART-ENT

MAJOR-PART-NO ASSEMBLY-QUANTITY COMPONENT-ENT

MINOR-PART-NO

Table 5 Parts Model: Relations and their Data Elements

Relation Data Elements Comprising Relation

PART PART-NO part-name part-price part-qty-
in-stock

MAJOR-PART MAJOR-PART-NO part-no

MINOR-PART MINOR-PART-NO part-no

COMPONENT MAJOR-PART-NO MINOR-PART-NO assembly-
quantity

>
>

ASG-Manager Products Relational Technology Support: SQL/DS

44

Parts Model Example: Associations between the Relations
The diagram below shows the four relations with their respective primary key data elements and
the foreign key associations, domain associations, and hierarchical-one associations in which they
participate.

Figure 7 Parts Model: Associations between the Relations

Parts Model Example: Description of the Relations
The contents of the relations are described below, including, for each, its key, its non-prime data
elements (if any), and any associations in which it participates as the source relation.

PART is an FD relation. It has:

• The key, PART-NO

• Non-prime data elements, part-name, part-price, and part-qty-in-stock

• No associations leading from it.

MAJOR-PART and MINOR-PART are both role relations, with:

• The respective keys, MAJOR-PART-NO and MINOR-PART-NO

• The non-prime data element, part-no, appearing in each

• A domain association leading from each to the target relation, PART, via the domain
dependencies from their respective keys to PART-NO, the key of PART

COMPONENT is an FD relation. It has:

• A composite primary key consisting of the prime data elements, MAJOR-PART-NO and
MINOR-PART-NO

• A non-prime data element, assembly-quantity

• A hierarchical-one association leading from it to the target relation MAJOR-PART, via its
prime data element MAJOR-PART-NO, which is also the key of MAJOR-PART

• A hierarchical-one association leading from it to the target relation MINOR-PART, via its
other prime data element MINOR-PART-NO, which is also the key of MINOR-PART.

PART-NO

MAJOR-PART-NO
MINOR-PART-NO

MAJOR-PART-NO MINOR-PART-NO

PART

MAJOR-PART MINOR-PART

COMPONENT

3 SQL/DS Database Design

45

Parts Model Example: Contents of the Tables
You can now generate the SQL design from the relational schema, by issuing one of these
commands:

• SQL LIST

• SQL REPORT

• SQL PLOT

• SQL PREVIEW

• SQL POPULATE.

The SQL design generated from the relations PART, MAJOR-PART, MINOR-PART, and
COMPONENT contains four tables.

When a table in the SQL design is generated from a relation in the relational schema, the table
takes the name and Workbench Design Area number of its source relation. In general, all of the
data elements of the relation become the columns of the table, where the key of the relation
becomes the primary key of the table.

However, in the Parts Model example, two relations prove to be exceptions to this rule. That is, the
role relations MAJOR-PART and MINOR-PART both have the non-prime data element, part-no,
which does not become a column in either of the corresponding tables. This is because the set of
valid values of each of MAJOR-PART-NO and MINOR-PART-NO is a subset of the set of valid
values of part-no. If part-no were included, each row of the tables MAJOR-PART and
MINOR-PART would contain the same value in both the primary key column and the non-prime
column.

The four tables in the generated SQL design are shown below. The columns comprising the
primary key of the table are shown in capital letters. The non-key columns of the table are shown
in lower case.

Parts Model Example: Relationships between the Tables
The diagram below represents the generated SQL design. It displays all four tables with their
respective primary key columns and the foreign key relationships in which they participate.

Table 6 Parts Model: Contents of the Tables

Table Name Columns Comprising Table

PART PART-NO part-name part-price part-qty-
in-stock

MAJOR-PART MAJOR-PART-NO

MINOR-PART MINOR-PART-NO

COMPONENT MAJOR- PART-NO MINOR-PART-NO assembly-
quantity

ASG-Manager Products Relational Technology Support: SQL/DS

46

Figure 8 Parts Model: Relationships of the Tables

Parts Model Example: Description of the Tables

PART is a parent table. It has:

• The primary key, PART-NO

• Non-prime columns, part-name, part-price, and part-qty-in-stock

• A dependent table MAJOR-PART in which the primary key, MAJOR-PART-NO, is a
foreign key to PART

• A dependent table MINOR-PART in which the primary key, MINOR-PART-NO, is also a
foreign key to PART.

MAJOR-PART and MINOR-PART are both parent tables and dependent tables, with:

• Respective primary keys, MAJOR-PART-NO and MINOR-PART-NO

• A dependent table COMPONENT in which the primary key components,
MAJOR-PART-NO and MINOR-PART-NO, are the respective foreign keys to
MAJOR-PART and MINOR-PART

• A parent table PART. The primary keys, MAJOR-PART-NO and MINOR-PART-NO, of
MAJOR-PART and MINOR-PART are foreign keys in their respective relationships with
the parent table PART.

COMPONENT is a dependent table. It has:

• A composite primary key with MAJOR-PART-NO and MINOR-PART-NO as the
constituent prime columns

• A non-prime column, assembly-quantity

• A parent table, MAJOR-PART. In this relationship, the prime column, MAJOR-PART-NO,
of COMPONENT is the foreign key to MAJOR-PART.

• A parent table, MINOR-PART. In this relationship, the prime column, MINOR-PART-NO,
of COMPONENT is the foreign key to MINOR-PART.

PART-NO

MAJOR-PART-NO
MINOR-PART-NO

MAJOR-PART-NO MINOR-PART-NO

PART

MAJOR-PART MINOR-PART

COMPONENT

3 SQL/DS Database Design

47

Parts Model Example: Refining the SQL Design
So far the example has illustrated how a SQL design is generated in the Workbench Design Area
(WBDA). When you enter the SQL PREVIEW or SQL POPULATE command, SQL dictionary
definitions are generated automatically for the four SQL tables, with their respective primary keys
and foreign keys.

Once the SQL definitions are in the dictionary, you may wish to add more clauses to them. You
may also wish to refine some of the generated tables for performance reasons; for instance, you
may decide to split or combine some tables.

The generated tables MAJOR-PART and MINOR-PART both contain only a single column,
MAJOR-PART-NO and MINOR-PART-NO, respectively. You may prefer to merge both of these
tables with the table COMPONENT, so that the table PART would become the parent of
COMPONENT instead of being the parent of MAJOR-PART and MINOR-PART; each of the
columns MAJOR-PART-NO and MINOR-PART-NO in the table COMPONENT (the columns
comprising its composite primary key) would then become foreign keys of the table PART, as
follows:

Figure 9 Parts Model: Merging Tables

However, it may be useful to keep either or both of MAJOR-PART and MINOR-PART as tables
in their own right. This would ensure integrity by maintaining valid lists of both major parts and
minor parts.

Thus, when a new row is inserted into the table COMPONENT, the columns for MAJOR-PART
and MINOR-PART can be checked for valid values of major parts and minor parts. This can be
done either by maintaining the single column tables for MAJOR-PART and MINOR-PART and
letting SQL ensure the integrity, or by programming the checks into your applications.

Furthermore, if you expect subsequently to add new attributes or relationships to either of the
entities MAJOR-PART or MINOR-PART, then you should keep the MAJOR-PART and
MINOR-PART tables.

The final decisions about operation and performance are made by the database designer. You can
then complete the physical design of the SQL/DS database by documenting those decisions in the
relevant SQL-TABLE, SQL-INDEX, and SQL-VIEW dictionary members.

PART-NO

MAJOR-PART-NO
MINOR-PART-NO

PART

COMPONENT

ASG-Manager Products Relational Technology Support: SQL/DS

48

SQL/DS Design Analysis

Output from the SQL REPORT Command

Introduction to the SQL REPORT Output

The SQL REPORT command produces a report, called the SQL Table Report, showing the SQL
tables generated in the SQL design. You can report all the tables in the Workbench Design Area
(WBDA) or a selection of tables. Tables may be selected by name or WBDA number.

The output includes first the total number of tables in the Workbench Design Area (WBDA). It
then gives details of the contents of each selected table, a description of each dependency
represented by the table, and the origin of that dependency, and, for each foreign key relationship
in which the table participates, information about the related parent or dependent table.

If you have the optional User Formatted Output facility installed, you can tailor the format and
content of the SQL Table Report.

Refer to ASG-DesignManager User Formatted Output for details of the User Formatted Output
facility.

Contents of Tables in SQLREPORT Output

For each selected table, the SQL Table Report shows:

• The table type, that is, PARENT/ROOT, DEPENDENT/PARENT, DEPENDENT/LEAF,
or INDEPENDENT

• The table number

• The table name (if one has been assigned to the corresponding relation in the relational
schema)

• The columns comprising the primary key of the table

• The non-prime columns present in the table (if any); that is, each column in the table which
does not form any part of the key.

Then two report lines are output for each dependency represented by the table. The first output line
shows:

• Its absolute dependency number in the WBDA (ABS REL column)

• The data elements comprising its left-hand side

• The data elements comprising its right-hand side

• The type of dependency: functional (FD), multivalued (MVD), or domain (DD).

3 SQL/DS Database Design

49

The second output line shows the origin of the dependency:

• Either it was generated by the MERGE command from one or more data-views, in which
case the report includes:

— The name and type (USERVIEW or ENTITY) of each data-view and

— The relative number of the dependency in that data-view.

• Or it was created during MERGE command processing as an implied FD.

Refer to "Example of SQL REPORT Output" on page 50 for an example of the SQL REPORT
output.

Foreign Key Relationships in SQL REPORT Output

For each selected table in the SQL design which participates in foreign key relationships, the SQL
Table Report gives additional information about each of its related parent or dependent tables.

In the output for a selected table, the two possible types of foreign key relationship are indicated
by the following keywords:

• FOREIGN-KEY is used to indicate a direct foreign key relationship, derived either from a
direct foreign key association or from a direct hierarchical-one association in the
corresponding relational schema

• DOMAIN indicates a domain type of relationship, derived from a domain association.

The significance of the relationship types is explained below, both for a related parent table and
for a related dependent table. (In each case, T1 is the selected table, T2 is its related parent table,
and T3 is its related dependent table.)

For each related parent table:

• FOREIGN-KEY indicates a direct foreign key relationship between T1 and T2, where the
primary key of T2 is contained as a set of columns in T1 (that is, as a foreign key in T1 to
the parent table T2), and there is no intermediate table that is both a parent of T1 and a
dependent of T2 in direct foreign key relationships

• DOMAIN indicates a domain relationship between T1 and T2, due to a domain dependency
in the Workbench Design Area (WBDA) holding from the primary key of T1 to the primary
key of T2.

For each related dependent table:

• FOREIGN-KEY indicates a direct foreign key relationship between T1 and T3, where the
primary key of T1 is contained as a set of columns in T3 (that is, as a foreign key to T1 in
the dependent table T3), and there is no intermediate table that is both a parent of T3 and a
dependent of T1 in direct foreign key relationships

• DOMAIN indicates a domain relationship between T1 and T3, due to a domain dependency
in the WBDA holding from the primary key of T3 to the primary key of T1.

ASG-Manager Products Relational Technology Support: SQL/DS

50

The SQL Table Report contains the following information for each parent table of a table selected
for reporting:

• The parent table number

• The parent table name (if one has been assigned)

• The type of relationship, that is, a direct or domain type of foreign key relationship

• The columns comprising the primary key of the parent table

• The columns of the selected table comprising the foreign key to the parent table, where:

— In a direct foreign key relationship, these columns are identical to those comprising the
primary key of the parent table

— In a domain relationship, they are different. Each foreign key column in the selected
table is shown paired with its corresponding primary key column in the parent table.

The SQL Table Report contains the following information for each dependent table of a table
selected for reporting:

• The dependent table number

• The dependent table name (if one has been assigned)

• The type of relationship, that is, a director domain type of foreign key relationship

• The columns comprising the primary key of the dependent table

• The columns of the dependent table comprising the foreign key to the selected table, where:

— In a direct foreign key relationship, these columns are identical to the columns
comprising the primary key of the selected table

— In a domain relationship, they are different. Each foreign key column in the dependent
table is shown paired with its corresponding primary key column in the selected table.

Example of SQL REPORT Output

In this example, a SQL Table Report is produced for the following tables which have been
generated in the SQL design in the Workbench Design Area (WBDA). The names of the columns
comprising the primary key of each table are shown in capital letters. The names of non-prime
columns are shown in lower case.

3 SQL/DS Database Design

51

The tables in the SQL Table Report are described in order of table number, as they appear in the
list above.

* *
* SQL TABLE REPORT *
* *
* TOTAL NUMBER OF TABLES ...6 *
* *

==================LEAF/DEPENDENT==================
1 DEPARTMENT-MEMBER
==
PRIMARY KEY DATA ELEMENTS
DEPARTMENT-NO
EMPLOYEE-NO

Table 7 Tables in the SQL Design in the WBDA: SQL Report

Table No. and Name Columns Comprising Table

1 DEPARTMENT-MEMBER DEPARTMENT-NO EMPLOYEE-NO

2 OFFICE-DEPARTMENT OFFICE-LOCATION DEPARTMENT-NO

3 DEPARTMENT DEPARTMENT-NO department-name manager-
no

4 EMPLOYEE EMPLOYEE-NO employee-name

5 OFFICE OFFICE-LOCATION office-name

6 MANAGER MANAGER-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

5 DEPARTMENT-NO—MVD➝➝EMPLOYEE-NO

3 ENTITY DEPARTMENT-ENT

ASG-Manager Products Relational Technology Support: SQL/DS

52

==================LEAF/DEPENDENT==================
2 OFFICE-DEPARTMENT
==
PRIMARY KEY DATA ELEMENTS
OFFICE-LOCATION
DEPARTMENT-NO

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

3 DEPARTMENT

FOREIGN-KEY

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

4 EMPLOYEE

FOREIGN-KEY

EMPLOYEE-NO EMPLOYEE-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

7 OFFICE-LOCATION—MVD➝➝DEPARTMENT-NO

2 ENTITY OFFICE-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

3 DEPARTMENT

FOREIGN-KEY

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

5 OFFICE

FOREIGN-KEY

OFFICE-LOCATION OFFICE-LOCATION

3 SQL/DS Database Design

53

==================PARENT/DEPENDENT==================
3 DEPARTMENT
==
PRIMARY KEYDATA ELEMENTS
DEPARTMENT-NO

DEPARTMENT-NAME
MANAGER-NO

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

3 DEPARTMENT-NO—FD➝DEPARTMENT-NAME

1 ENTITY DEPARTMENT-ENT

4 DEPARTMENT-NO—FD�MANAGER-NO

2 ENTITY DEPARTMENT-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

6 MANAGER

FOREIGN-KEY

MANAGER-NO MANAGER-NO

Dependent Table Current Table Foreign Key

NAME

TYPE

P-KEY

F-KEY

1 DEPARTMENT-MEMBER

FOREIGN-KEY

DEPARTMENT-NO

EMPLOYEE-NO

DEPARTMENT-NO DEPARTMENT-NO

NAME

TYPE

P-KEY

F-KEY

2 OFFICE-DEPARTMENT

FOREIGN-KEY

OFFICE-LOCATION

DEPARTMENT-NO

DEPARTMENT-NO DEPARTMENT-NO

ASG-Manager Products Relational Technology Support: SQL/DS

54

==================ROOT/PARENT==================
4 EMPLOYEE
===
PRIMARY KEY DATA ELEMENTS
EMPLOYEE-NO

EMPLOYEE-NAME

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

1 EMPLOYEE-NO—FD�EMPLOYEE-NAME

1 ENTITY EMPLOYEE-ENT

Parent Table Current Table Primary Key

NAME

TYPE

P-KEY

F-KEY

1 DEPARTMENT-MEMBER

FOREIGN-KEY

DEPARTMENT-NO

EMPLOYEE-NO

EMPLOYEE-NO EMPLOYEE-NO

NAME

TYPE

P-KEY

F-KEY

6 MANAGER

DOMAIN

MANAGER-NO

MANAGER-NO EMPLOYEE-NO

3 SQL/DS Database Design

55

==================ROOT/PARENT==================
5 OFFICE
===
PRIMARY KEY DATA ELEMENTS
OFFICE-LOCATION

OFFICE-NAME

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

6 OFFICE-LOCATION—FD�OFFICE-NAME

1 ENTITY OFFICE-ENT

Dependent Table Current Table Foreign Key

NAME

TYPE

P-KEY

F-KEY

2 OFFICE-DEPARTMENT

FOREIGN-KEY

OFFICE-LOCATION

DEPARTMENT-NO

OFFICE-LOCATION OFFICE-LOCATION

ASG-Manager Products Relational Technology Support: SQL/DS

56

==================PARENT/DEPENDENT==================
6 MANAGER
==
PRIMARY KEY DATA ELEMENTS
MANAGER-NO

* *
* END OF SQL REPORT *
* *

Output from the SQL PLOT CLUSTER Command

Introduction to the SQL PLOT CLUSTER Output
The output of the SQL PLOT CLUSTER command, called the SQL Cluster Plot, provides you
with detailed graphical displays for selected tables in the SQL design in the Workbench Design
Area (WBDA).

The output shows where relationships exist between tables, the type of the relationships, and the
primary and foreign keys used.

For each selected table, a diagram is produced in cluster form, showing the table’s foreign key
relationships (if any) with the other tables of the SQL design. You can output cluster diagrams for
all the tables in the WBDA or for tables selected by name or WBDA number.

ABS LEFT-HAND-SIDE TYPE RIGHT-HAND-SIDE

REL DATA-VIEW

2 MANAGER-NO===DD==>EMPLOYEE-NO

2 ENTITY EMPLOYEE-ENT

Parent Table Current Table Foreign Key

NAME

TYPE

P-KEY

4 EMPLOYEE

DOMAIN

EMPLOYEE-NO MANAGER-NO

Dependent Table Current Table Primary Key

NAME

TYPE

P-KEY

F-KEY

3 EMPLOYEE

FOREIGN-KEY

DEPARTMENT-NO

MANAGER-NO MANAGER-NO

3 SQL/DS Database Design

57

After all the cluster diagrams have been displayed, the SQL Design Relationship matrix is output;
this is a two-dimensional table which summarizes all of the foreign key relationships between the
tables in the WBDA. The SQL Design Relationship matrix always shows all the tables in the
WBDA.

If you have the optional User Formatted Output facility installed, you can specify the name of an
appropriate FORMAT member of the dictionary in the command in order to tailor the format and
content of the SQL Cluster Plot.

Refer to ASG-DesignManager User Formatted Output for details of the User Formatted Output
facility.

Format of the Cluster Diagram
In each cluster diagram displayed in the SQL Cluster Plot, the table selected for output is depicted
by a larger box and the related tables by smaller boxes. Foreign key relationships between tables
are represented by connecting arrows. The SQL/DS convention is followed, in which the arrow
points from the parent table to the dependent table.

The type of foreign key relationship existing between the selected table (T1) and each related table
(T2) is indicated by the type of arrow used to connect them, as explained below.

Direct foreign key relationships are indicated either by:

T1 T2

where the selected table is the parent table in the relationship; that is, the primary key of T1 is
contained as a set of columns in T2, or by:

T1 T2

where the selected table is the dependent table in the relationship; that is, the primary key of T2 is
contained as a set of columns in T1.

If the selected table is related both as a parent and as a dependent table in two different
relationships with the same table, then the bidirectional arrow is used to represent the relationship:

T1 < T2

A domain relationship is indicated either by:

T1 =====> T2

where the selected table is the parent table in the relationship; that is, a domain relationship exists
between T1 and T2, due to a domain dependency in the Workbench Design Area (WBDA)
holding from the primary key of T2 to the primary key of T1, or by:

T1 <===== T2

ASG-Manager Products Relational Technology Support: SQL/DS

58

where the selected table is the dependent table in the relationship; that is, a domain relationship
exists between T1 and T2, due to a domain dependency in the WBDA holding from the primary
key of T1 to the primary key of T2.

In a cluster the tables are arranged vertically. In accordance with ASG-DesignManager
convention, related parent tables appear above the selected table and related dependent tables
appear below it. The only exception to this convention occurs when a foreign key relationship
holds in both directions between the selected table and a related table, in which case the related
table appears below the selected table.

Refer to "Foreign Key Relationships in SQL REPORT Output" on page 49 for a discussion of
direct and domain types of foreign key relationships.

The Information in the Cluster Diagram
Each cluster diagram of the SQL Cluster Plot displays information about the selected table and
about each of its related tables.

The following information is given for the selected table:

• The table type, that is, ROOT/PARENT, PARENT/DEPENDENT, LEAF/DEPENDENT,
or INDEPENDENT

• The table’s Workbench Design Area (WBDA) number

• The table name (the same name as that of its corresponding WBDA relation, if that relation
has previously been named via the NAME command)

• The names of the columns comprising the primary key of the table

• The name of each non-prime column in the table, that is, each column which does not form
part of the key.

The following information is given for each related table:

• The table WBDA number

• The table name (if its corresponding relation has been named using the NAME command)

• The names of the columns comprising the primary key of the table

• The relationship that holds between the selected table and the related table (represented by a
connecting arrow).

3 SQL/DS Database Design

59

Example of the Output from SQL PLOT CLUSTER
Consider the following example. In the table below the names of columns which form the primary
key of each table are shown in capital letters, and the names of non-prime columns are shown in
lower case.

Taking each of these tables in turn, the following clusters would be displayed in the SQL Cluster
Plot.

When the table DEPARTMENT-MEMBER is selected:

Figure 10 Cluster Generated for the Table DEPARTMENT-MEMBER

Table 8 Tables in the SQL DESIGN in the WBDA: SQL PLOT

Table No. and Name Columns Comprising Table

1 DEPARTMENT-MEMBER DEPARTMENT-NO EMPLOYEE-NO

2 OFFICE-DEPARTMENT OFFICE-LOCATION DEPARTMENT-NO

3 DEPARTMENT DEPARTMENT-NO department-name manager-
no

4 EMPLOYEE EMPLOYEE-NO employee-name

5 OFFICE OFFICE-LOCATION office-name

6 MANAGER MANAGER-NO

3 DEPARTMENT

KEY DEPARTMENT-NO

4 EMPLOYEE

KEY EMPLOYEE-NO

1 DEPARTMENT-MEMBER

COLUMNS
DEPARTMENT-NO
EMPLOYEE-NO

KEY

LEAF/DEPENDENT

ASG-Manager Products Relational Technology Support: SQL/DS

60

When the table OFFICE-DEPARTMENT is selected:

Figure 11 Cluster Generated for the Table OFFICE-DEPARTMENT

When the table DEPARTMENT is selected:

Figure 12 Cluster Generated for the Table DEPARTMENT

3 DEPARTMENT

KEY DEPARTMENT-NO

5 OFFICE

KEY OFFICE-LOCATION

2 OFFICE-DEPARTMENT

COLUMNS
OFFICE-LOCATION
DEPARTMENT-NO

KEY

LEAF/DEPENDENT

6 MANAGER

KEY MANAGER-NO

1 DEPARTMENT-MEMBER

KEY DEPARTMENT-NO

3 DEPARTMENT

COLUMNS

DEPARTMENT-NO

PARENT/DEPENDENT

DEPARTMENT-NAME
MANAGER-NO

KEY

 EMPLOYEE-NO

2 OFFICE-DEPARTMENT

KEY OFFICE-LOCATION
 DEPARTMENT-NO

3 SQL/DS Database Design

61

When the table EMPLOYEE is selected:

Figure 13 Cluster Generated for the Table EMPLOYEE

When the table OFFICE is selected:

Figure 14 Cluster Generated for the Table OFFICE

1 DEPARTMENT-MEMBER

KEY DEPARTMENT-NO

4 EMPLOYEE

COLUMNS

EMPLOYEE-NO

ROOT/PARENT

KEY

 EMPLOYEE-NO

6 OFFICE MANAGER

KEY MANAGER-NO

EMPLOYEE-NAME

===>

2 OFFICE-DEPARTMENT

KEY OFFICE-LOCATION

5 OFFICE

COLUMNS

OFFICE-LOCATION

ROOT/PARENT

KEY

 DEPARTMENT-NO

OFFICE-NAME

ASG-Manager Products Relational Technology Support: SQL/DS

62

When the table MANAGER is selected:

Figure 15 Cluster Generated for the Table MANAGER

SQL Design Relationship Matrix
In the SQL Cluster Plot, the SQL Design Relationship matrix is output after all the clusters for the
selected tables have been displayed.

Note:
The matrix always shows all the tables in the Workbench Design Area (WBDA), regardless of any
selections specified in the SQL PLOT CLUSTER command.

The matrix is a table of entries summarizing all the foreign key relationships between the tables in
the WBDA. It can be used as a quick reference to determine the existence of a foreign key
relationship and its type.

The matrix is an n-by-n square array, where n is the total number of tables in the WBDA. Row 1
and column 1 correspond to table 1, row 2 and column 2 to table 2, and so on. The rows of the
matrix represent the parent tables, and the columns represent the dependent tables.

4 EMPLOYEE

KEY EMPLOYEE-NO

3 DEPARTMENT

6 MANAGER

COLUMNS

MANAGER-NO

PARENT/DEPENDENT

KEY

KEY DEPARTMENT-NO

3 SQL/DS Database Design

63

The matrix shown here is the one produced after the cluster diagrams discussed earlier in this
branch.

Figure 16 Matrix Produced by the SQL PLOT Command

By reading across a row, you can identify the relationships that hold from a particular parent table
to its dependent tables.

By reading down a column, you can identify the relationships that hold to a dependent table from
each of its parent tables.

A relationship between two tables is indicated by a character at the intersection of the row and
column representing those tables. The character used indicates the type of relationship that exists:

• 1 indicates a direct foreign key type of relationship from the row table (the parent table) to
the column table (the dependent table)

• D indicates a domain type of foreign key relationship from the row table (the parent table) to
the column table (the dependent table). This means that a domain dependency exists in the
WBDA holding from the key of the column table to the key of the row table.

For example, in the matrix above you can see that DEPARTMENT is the parent table of
DEPARTMENT-MEMBER and OFFICE-DEPARTMENT, and that the relationship is the direct
foreign key type.

If no relationship exists between one table and another, then the corresponding matrix intersection
is left blank.

Refer to "Example of the Output from SQL PLOT CLUSTER" on page 59 to see the associated
cluster plot.

1 2 3 4 5 6

DEPARTMENT-MEMBER 1

: : : : :

OFFICE-DEPARTMENT 2

: : : : :

DEPARTMENT 3 1 1

: : : : :

EMPLOYEE 4 1 D

: : : : :

OFFICE 5 1

: : : : :

MANAGER 6 1

ASG-Manager Products Relational Technology Support: SQL/DS

64

Output from the SQL PLOT REFERENTIAL-STRUCTURES Command

Introduction and Overview to the SQL PLOT REFERENTIAL-STRUCTURES Output
The output of the SQL PLOT REFERENTIAL-STRUCTURES command, called the SQL
Referential Structures Plot, provides you with a diagrammatic overview of the referential
structures comprising the SQL design in the WBDA. They are displayed without details of the
SQL table content.

The SQL Referential Structures Plot is complementary to the SQL Cluster Plot, which, for each
SQL table in the SQL design, provides details of its content and its relationships with other SQL
tables. The SQL Referential Structures Plot gives you an easy-to-understand overall picture of one
or more referential structures and the tables contained in each.

The relationships displayed between tables in the SQL Referential Structures Plot include the
following types:

• Direct foreign key relationships

• Domain relationships.

Refer to "Foreign Key Relationships in SQL REPORT Output" on page 49 for details of these
relationship types and how they correspond to association types in the relational schema from
which the SQL design was generated.

The tables displayed in the SQL Referential Structures Plot can be of any of the following types:

• PARENT/ROOT

• DEPENDENT/PARENT

• DEPENDENT/LEAF

• INDEPENDENT.

Refer to "Description of the SQL LIST TABLES Output" on page 73 for definitions of the various
types of tables.

In a SQL Referential Structures Plot, the tables are displayed as boxes and the relationships as
connecting lines, where these lines appear as unidirectional arrows. However, in a plot for a large
and complex SQL design, you would find that the number of arrows that cross one another would,
in general, create a mass of confusing detail.

In the SQL Referential Structures Plot, this is avoided completely by the tactic of displaying the
boxes and lines in the form of an equivalent hierarchical (tree) structure. The composition of the
(relational) SQL design is not affected, only the way it is represented. The great advantage of the
hierarchical display is that connecting arrows will never cross, no matter how large and complex
the SQL design. This makes it much easier for you to perceive its overall structure.

3 SQL/DS Database Design

65

The tree structure starts with a single box, the seed, and branches out hierarchically to the right in
columnar levels. Successive levels consist of vertically aligned child boxes, each connected to a
box at the preceding level. The first level consists of only the seed. The second level contains
children of the seed, the third level contains children of the level two boxes, and so on. A box that
has no child at the next level is called a leaf. The children of a non-leaf box plus its childrens’
children, and so on, are called its descendants.

In addition to the representation of the SQL design as an equivalent hierarchical structure, a
further simplifying feature has been incorporated in the SQL Referential Structures Plot which
serves to reduce the number of boxes appearing in the diagram. In the tree structure, no table is
represented more than once by a box. Each other occurrence of the table and any sub-branch of
lower level tables emanating from it in the tree (that is, its descendants) is represented in the plot
by a single pointer instead of duplicating the entire sub-branch for the occurrence.

Refer to "Use of Pointers in the SQL PLOT REFERENTIAL-STRUCTURES Output" on page 67
for details of the use of pointers.

In a SQL Referential Structures Plot, boxes are displayed with dashed outlines and pointers with
dotted outlines.

There are a number of command options available to you for the SQL Referential Structures Plot
which can further simplify the display. You can show either:

• All the tables of the SQL design, or

• An individual referential structure based on a specified seed.

You can also specify the direction of (and thus limit) the relationships to be displayed, that is
parent or dependent relationships. These options enable you to focus attention on desired subsets
of the design and on desired types of access through the design.

If you have the optional User Formatted Output facility installed, you can also specify a
meaningful title for the plot by entering it as a string in the ASG-ControlManager command, SET
FORMAT-TITLE, before you issue the SQL PLOT command.

Refer to ASG-DesignManager User Formatted Output for details of the User Formatted Output
facility.

Layout of the SQL PLOT REFERENTIAL STRUCTURES Output
In summary, in the SQL Referential Structures Plot, the tables in the SQL design are represented
by boxes and pointers; relationships between the tables are represented by connecting lines. In the
output medium, boxes are displayed with dashed outlines, pointers with dotted outlines, and
connecting lines appear as unidirectional arrows.

Table numbers are displayed on the left lower boundary of the corresponding box or pointer. If a
table is named, the interior of a box or pointer contains the table name; otherwise, it contains text
formed from the table’s primary key.

ASG-Manager Products Relational Technology Support: SQL/DS

66

Text formed from a key consists of up to three lines. Each line of text is formed from a data
element contained in the key. If the key contains more than one data element, the lines are formed
in alphanumeric order of data element name. Each line is limited to a maximum of eleven
characters, comprising either:

• The data element name, or

• The first eleven characters of the name.

As a consequence, it is possible for the same text to be formed from the keys of different tables.
However, the text displayed is intended only as an aid to identification. Positive identification of
the table being represented is given by the table number which appears on the left lower boundary
of each box or pointer displayed.

Following are examples of text formed from table keys:

Boxes and their connecting lines are laid out on the output medium in logical lines. Each logical
line occupies six physical print lines and contains one or more boxes and at most one pointer
(perhaps none). Logical lines are numbered consecutively, beginning with one. These numbers are
very useful as they are used in pointers and in the Numeric and Alphabetic Directories that follow
the plot to help you locate any table displayed in the plot.

The boxes and pointers are laid out from left to right on the logical lines in order of the
hierarchical levels they form. The highest level is that of the seed, which is placed in the upper left
hand corner of the plot. Each lower level box (or pointer) appears to the right of the box (at the
next higher level) to which it is connected as a child. All the children of a given box are shown at
the next level, one below the other, each connected to the given box.

The seed, which is the only level 1 box in the hierarchy, appears as the only box on logical line
number 1. The level 2 boxes consist of the children of the seed, that is all the tables which have
direct relationships with the seed. The first of these is placed on logical line 2 at level 2.

Key Text Formed

EMPLOYEE-NO EMPLOYEE-NO (no truncation)

EMPLOYEE-NAME EMPLOYEE-NA (1st 11 characters)

DEPARTMENT-NO, DEPARTMENT- (1st 11 characters)

EMPLOYEE-NAME, EMPLOYEE-NA (1st 11 characters)

OFFICE-NO OFFICE-NO (no truncation)

DEPARTMENT-NO, DEPARTMENT- (1st 11 characters)

EMPLOYEE-NAME, EMPLOYEE-NA (1st 11 characters)

OFFICE-NO, OFFICE-NO, (no truncation)

PROJECT-NO (omitted)

3 SQL/DS Database Design

67

The level 3 boxes and pointers are the children of the level 2 boxes. If the first level 2 box has any
children, the first of these is placed on logical line 2 to the right of (and connected with) the level 2
box. The placement of lower level boxes and pointers on the logical lines follows the same pattern,
with the children of a box appearing to the right of the box. A box that has no children is called a
leaf.

A simple example of a SQL Referential Structures Plot appears in the following diagram:

Figure 17 SQL Referential Structure Plot

In the diagram, foreign key relationships are depicted from table T1 (the seed for the plot) to table
T2 and from table T2 to each of tables T3 and T4.

Use of Pointers in the SQL PLOT REFERENTIAL-STRUCTURES Output
In the SQL Referential Structures Plot, a table is represented by a pointer instead of a box if it has
already been displayed as a box elsewhere in the plot, either at a higher level on any logical line or
at the same level but on a preceding logical line. The purpose is to display each table only once as
a box along with any lower level descendants the box may have. Thereafter, the table is displayed
as a pointer (without lower level descendants) to the logical line in which it appeared as a box. The
number of this logical line always appears on the right upper boundary of the pointer. A table may
be displayed as a pointer several times in the plot, but it cannot be displayed more than once as a
box.

In fact, a pointer being displayed in a SQL Referential Structures Plot can be quite significant. The
appearance of such a pointer serves to highlight one of two important situations in a SQL design.
A pointer signifies that either the table is in a cycle or that the table participates in more than one
foreign key relationship; a quick glance at the output will indicate which.

Consider the sample plot appearing in the following diagram:

T1
 <1›

T2
<2›

T3
<3›

T4
<4›

Level 1

Level 2 Level 3

Level 4

Logical line
number

1

2

3

ASG-Manager Products Relational Technology Support: SQL/DS

68

Figure 18 Use of Pointers in SQL Referential Structure Plots

In the sample plot, note that:

• Table TAB-C appears as a pointer in level 3 because it was already displayed as a box in
level 2. This pointer highlights the fact that TAB-C is a dependent table of both TAB-A and
TAB-B.

• Table TAB-D appears as a pointer in level 3 on logical line 4 because it appeared as a box in
the same level on logical line 2. This pointer highlights the fact that TAB-D is a dependent
table of both TAB-B and TAB-C.

• No pointers are required for tables TAB-E and TAB-F because they are descendants of table
TAB-C and their repetition is indicated by the pointer for table TAB-C.

There is one other circumstance requiring the use of a pointer. This occurs when there is not
enough room on a logical line for all the tables that should be displayed on it. That is, the last box
for which there is room has one or more children at the next level (it is not a leaf). In this case, the
box is replaced by a pointer and the table it represents is placed in a continuation seed list.

Each continuation seed is then processed along with its descendants (that is, its children, its
children’s children, and so on), if any, further down in the diagram just as if it were the seed for a
new Referential Structure Plot. That is, it will appear as a box in the seed position at the top of a
new page. Pictorially, it will appear as the seed of a new tree. Structurally, however, it will be a
continuation of the incomplete branch. In this case, the pointer is called a continuation pointer.

A plot which begins with a continuation seed is called a continuation plot. It is a continuation of
the main plot, which begins with the primary seed. Continuation plots appear after the main plot
(or after any additional plots). Logical line numbers are assigned consecutively throughout each
plot and continue consecutively from one plot to another.

TAB-A
<1›

TAB-B
<2›

TAB-D
<3›

TAB-C
<4>

Level 1

Level 2 Level 3 Level 4

Logical
line

1

2

3

TAB-C
<4›

TAB-D
<3>

TAB-E
<5›

TAB-F
<6›

4

5

(4)

(2)

3 SQL/DS Database Design

69

In contrast with pointers, there is only one circumstance in which a box will have an entry on its
right upper boundary, that is, when the box is a continuation seed. In this case, the entry is the
number of the logical line from which it is continued.

Additional Plots in the SQL PLOT REFERENTIAL-STRUCTURES Output
After the main plot and any continuation plots have been displayed in the SQL Referential
Structures Plot (and if the ALL keyword has been specified in the SQL PLOT command),
ASG-DesignManager looks for any additional seeds that may be required to ensure that every
table in the SQL design is displayed. A plot which begins with an additional seed is called an
additional plot. (The main plot begins with the primary seed and each continuation plot with a
continuation seed.)

Refer to "Member Type and Command Descriptions" on page 143 for a discussion of how seeds
are selected when ALL is specified in the command.

An additional plot is not a continuation of the main plot. It represents a separate hierarchy.
Separate hierarchies emanating from different seed tables nevertheless can belong to the same
referential structure provided that all are linked via tables shared in common. Each such link
would be represented by a pointer from one hierarchical plot to a logical line in another
hierarchical plot.

Separate hierarchical plots belonging to the same referential structure can appear in the display
only when the keywords ALL and either PARENTS or DEPENDENTS are specified in the
command. If, on the other hand, ALL is specified but neither PARENTS nor DEPENDENTS (the
default selection, indicating that both parent and dependent foreign key relationships are to be
plotted), then every additional plot will represent not only a separate hierarchy but also a complete
referential structure.

Indeed, not specifying PARENTS or DEPENDENTS in the command (no matter which of the
ALL or SEED options has also been selected) is the only way to ensure the display of hierarchies
that represent complete referential structures.

The seed for an additional plot appears in the seed position at the top of a new page. The logical
line number of the seed follows consecutively from the last logical line of the preceding plot.

You can always distinguish between a continuation seed and an additional seed because the former
has a logical line number entered on its right upper boundary whereas the latter does not.

Note:
An additional plot may itself be followed by one or more continuation plots.

Also, it is possible in this process to produce an additional plot which takes the form of a seed-only
hierarchy. An additional seed may, for instance, be a leaf with no children. In this case, the
additional plot consists of only a single box.

In particular, after all the tables in all the referential structures have been processed,
ASG-DesignManager will produce a seed-only hierarchy for each independent table, if any, in the
SQL design.

ASG-Manager Products Relational Technology Support: SQL/DS

70

Use of Directories in the SQL PLOT REFERENTIAL-STRUCTURES Output
At the end of the SQL Referential Structure Plot, two directories are given for referencing the
tables displayed, the Numeric Directory and the Alphabetic Directory. The Numeric Directory is
ordered by table number and shows, for each table displayed:

• In the first column, the table number and its name (if a name has been assigned)

• In the second column, the logical line number on which it is displayed as a box

• In the third column, every logical line number on which it is displayed as a pointer,
indicating each additional instance in which the table participates in a foreign key
relationship.

The Alphabetic Directory contains exactly the same information, but only for tables which have
been named. They are listed in alphanumeric order or table name.

The following diagram contains the same sample SQL Referential Structure Plot shown earlier in
the discussion of the use of pointers. In addition, the corresponding Numeric and Alphabetic
Directories are also given.

Refer to "Use of Pointers in the SQL PLOT REFERENTIAL-STRUCTURES Output" on page 67
for a discussion of the earlier diagram.

Figure 19 Use of Directories in an SQL Referential Structure Plot

TAB-A
<1›

TAB-B
<2›

TAB-D
<3›

TAB-C
<4>

Level 1

Level 2 Level 3 Level 4

Logical
line

1

2

3

TAB-C
<4›

TAB-D
<3>

TAB-E
<5›

TAB-F
<6›

4

5

(4)

(2)

3 SQL/DS Database Design

71

NUMERIC DIRECTORY

ALPHABETIC DIRECTORY

At a glance, you can see in the directories that tables TAB-C and TAB-D have entries in the third
column, indicating that they both appear in more than one foreign key relationship.

The directories provide another way to distinguish between a continuation seed and an additional
seed. A continuation seed will have a single logical line number entered in the third column of the
directory indicating the line from which the plot has been continued, whereas an additional seed
will have no entry in the third column.

Example of the SQL PLOT REFERENTIAL-STRUCTURE Output
Following is an example of the output from the SQL PLOT REFERENTIAL-STRUCTURES
command for the Department Model, where table number 1, that is table
DEPARTMENT-MEMBER, is specified as the seed with the default taken that all relationships
are to be displayed.

**
* SQL REFERENTIAL-STRUCTURES PLOT *
**

Table Line Other Occurrences

1 TAB-A 1

2 TAB-B 2

3 TAB-D 2 4

4 TAB-C 4 3

5 TAB-E 5

6 TAB-F 5

Table Line Other Occurrences

1 TAB-A 1

2 TAB-B 2

4 TAB-C 4 3

3 TAB-D 2 4

5 TAB-E 5

6 TAB-F 5

ASG-Manager Products Relational Technology Support: SQL/DS

72

NUMERIC DIRECTORY

ALPHABETIC DIRECTORY

Table Line Other Occurrences

1 DEPARTMENT-MEMBER 1

2 OFFICE-DEPARTMENT 2

3 DEPARTMENT 2

4 EMPLOYEE 4 3

5 OFFICE 2

6 MANAGER 3 4

Table Line Other Occurrences

3 DEPARTMENT 2

1 DEPARTMENT-MEMBER 1

4 EMPLOYEE 4 3

6 MANAGER 3 4

5 OFFICE 2

2 OFFICE-DEPARTMENT 2

DEPARTMENT
MEMBER

<1›

DEPARTMENT

<3›

MANAGER

<6›

EMPLOYEE

<4›

OFFICE-
DEPARTMENT

<2›

OFFICE

<5›

EMPLOYEE

<4>

(4)

MANAGER

<6>

(3)

<

>

1

2

3

4

3 SQL/DS Database Design

73

**
* END OF SQL REFERENTIAL-STRUCTURES *
**

Output from the SQL LIST TABLES Command

Introduction to the SQL LIST TABLES Output
The SQL LIST TABLES command produces a list of all or some of the SQL tables in the
Workbench Design Area (WBDA). For each SQL table selected, the list includes the WBDA
number of the table, its primary key, its name (if one has been assigned) and its type.

Selection of tables in the list is based on table type or a combination of table types. Selected tables
can be listed in order of table name or number.

Description of the SQL LIST TABLES Output

The output produced by the SQL LIST TABLES command shows, for each SQL table selected:

• The number of the table in the Workbench Design Area

• The columns comprising the primary key of the table

• The table name, if one has been assigned

• The type of table, that is, one of the following:

— PARENT/ROOT

— DEPENDENT/PARENT

— DEPENDENT/LEAF

— INDEPENDENT

where the above types are defined as indicated in the following paragraphs.

In SQL/DS, a foreign key relationship is directed from (the primary key of) a parent table to (a
foreign key in) a dependent table. If the relationship is derived from a domain association (in the
corresponding relational schema), then the foreign key is the primary key of the dependent table.
Otherwise, the foreign key is identical to the primary key of the parent table and appears in the
dependent table as a non-key set of columns (which can include some but not all of the dependent
table’s primary key).

A PARENT/ROOT table is a table which participates in one or more foreign key relationships as a
parent table only.

A DEPENDENT/PARENT table is a table which participates in one or more foreign key
relationships as a parent table and which also participates in one or more foreign key relationships
as a dependent table.

A DEPENDENT/LEAF table is a table which participates in one or more foreign key relationships
as a dependent table only.

ASG-Manager Products Relational Technology Support: SQL/DS

74

An INDEPENDENT table is a table which participates in no foreign key relationships at all, that
is, it is neither a parent nor a dependent table.

The output of this command can help you to decide which tables to specify as seeds in the SQL
PLOT REFERENTIAL-STRUCTURES command.

Example of the SQL LIST TABLES Output
The following is an example of output from the SQL LIST TABLES command for the Department
Model:

Output from the SQL LIST CYCLES Command

Introduction to the SQL LIST CYCLES Output
The SQL LIST CYCLES command produces, for every cycle present in the SQL design generated
in the Workbench Design Area (WBDA), a list of the tables appearing in the cycle.

Tables in each cycle can be listed in alphanumeric order or in cyclic order, beginning with the
table whose WBDA number is the lowest.

Refer to "SQL LIST CYCLES" on page 197 for the definition of a cycle and of cyclic order.

Table 9 List of SQL Tables Held in Workbench Design Area

Number Key Name and Type

1 EMPLOYEE-NO DEPARTMENT-MEMBER DEPENDENT/LEAF

DEPARTMENT-NO

2 DEPARTMENT-NO OFFICE-DEPARTMENT DEPENDENT/LEAF

OFFICE-LOCATION

3 DEPARTMENT-NO DEPARTMENT DEPENDENT/PARENT

4 EMPLOYEE-NO EMPLOYEE PARENT/ROOT

5 OFFICE-LOCATION OFFICE PARENT/ROOT

6 MANAGER-NO MANAGER DEPENDENT/PARENT

LIST CONTAINS 6 SQL TABLES

3 SQL/DS Database Design

75

Description of the SQL LIST CYCLES Output
For each cycle found in the SQL design present in the Workbench Design Area (WBDA), the SQL
LIST CYCLES command produces a list of the tables appearing in the cycle, showing for each
table:

• The table WBDA number

• The primary key of the table

• The name of the table, if one has been assigned

• The keyword MULTIPLE, if the table appears in more than one cycle.

Example of the SQL LIST CYCLES Output

In the following diagram, an example is pictured of a cycle with its path of tables and connecting
relationships:

Figure 20 An Example of a Cycle in the SQL Design

The following output would be produced by the SQL LIST CYCLES command (in this case, the
result is the same whether or not ALPHABETICALLY is specified in the command because
cyclic order, beginning with the lowest numbered table, and alphanumeric order happen to be the
same):

Table 10 List of SQL Cycles Held in Workbench Design Area

Cycle

Number Key Names

 1 COURSE-NO COURSE

 2 LANGUAGE-NO LANGUAGE

 3 STUDENT-NO STUDENT

CYCLE CONTAINS 3 SQL TABLES

COURSE

LANGUAGE STUDENT

ASG-Manager Products Relational Technology Support: SQL/DS

76

List Contains nn SQL Cycles

Generated SQL Member Definitions

Generated SQL-TABLE Member

Generated SQL-TABLE Definition
What follows is the subset generated by the SQL PREVIEW or SQL POPULATE command of the
complete SQL-TABLE dictionary member type syntax.

where column-specification is:

where referential-constraint is:

Cycle

Number Key Name

 .
 .
 .

� �ADD� sql-table-name ;

� �

CREATOR-OWNER sql-user
SQL-TABLE

� �COLUMNS column-specification

� �

IN dbspace-name

� �SEE dataview-name FOR 'SOURCE'
<<< , <<<<<<<<<<<<<<<<<<<<<<<<

� �;

�

� �CONTAINS

� �column-name
<<<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<<<<<<<<

NOT-NULL PRIMARY-KEY

� �<<<<<<<<<<<<<< , <<<<<<<<<<<<<
referential-constraint

3 SQL/DS Database Design

77

where sql-table-name, sql-user, column-name, dbspace-name,
referred-member, table-name, and dataview-name are valid dictionary member
names.

Refer to "SQL-TABLE" on page 245 for details of the complete SQL-TABLE member type
syntax.

Refer to"SQL PREVIEW" on page 218 for details of generating SQL-TABLE members via the
SQL PREVIEW command.

Example of Generated SQL-TABLE Dictionary Member
The following SQL-TABLE dictionary member is generated for a table called DEPARTMENT, in
the Workbench Design Area (WBDA). The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT is a dependent table of the table called MANAGER. It has columns
called DEPARTMENT-NO (its primary key), DEPARTMENT-NAME, and MANAGER-NO (its
foreign key). The name of the table space assigned to it in the SQL PREVIEW or SQL
POPULATE command is DEP-DBSP. The name assigned for the CREATOR-OWNER is
USER1.

ADD DEPARTMENT ;
SQL-TABLE
CREATOR-OWNER USER1
COLUMNS CONTAINS DEPARTMENT-NO NOT-NULL PRIMARY-KEY

, DEPARTMENT-NAME
, MANAGER-NO

CONSTRAINT FOREIGN-KEY MANAGER-NO
REFERENCES MANAGER
IN DEP-DBSP
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated SQL-INDEX Member

Generated SQL-INDEX Definition
What follows is the subset generated by the SQL PREVIEW or SQL POPULATE command of the
complete SQL-INDEX dictionary member type syntax.

� �CONSTRAINT FOREIGN KEY

� �column-name
<<<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<<<<<

MEMBER referred-member

� �REFERENCES table-name

ASG-Manager Products Relational Technology Support: SQL/DS

78

where sql-index-name, sql-user, column-name, table-name, and
dataview-name are valid dictionary member names.

Refer to "SQL-INDEX" on page 192 for details of the complete SQL-INDEX member type
syntax.

Refer to "Generating and Previewing SQL-INDEX Definitions" on page 222 for details of
generating SQL-INDEX members via the SQL PREVIEW command.

Example of Generated SQL-INDEX Dictionary Member
The following SQL-INDEX dictionary member is generated for a table called DEPARTMENT, in
the Workbench Design Area (WBDA). The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT has a primary key column called DEPARTMENT-NO. The
SQL-INDEX name is constructed by concatenating the table name with the default suffix '-IND'.
The name of the CREATOR-OWNER, assigned in the SQL PREVIEW or SQL POPULATE
command, is USER1.

ADD DEPARTMENT-IND ;
SQL-INDEX
CREATOR-OWNER USER1
UNIQUE ON DEPARTMENT
CONTAINS DEPARTMENT-NO
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated SQL-VIEW Member

Generated SQL-VIEW Definition
What follows is the subset generated by the SQL PREVIEW or SQL POPULATE command of the
complete SQL-VIEW dictionary member type syntax.

� �ADD sql-index-name� ;

� �SQL-INDEX

� �

CREATOR-OWNER sql-user

� �UNIQUE ON table-name

� �CONTAINS column-name

� �SEE dataview-name FOR 'SOURCE'
<<< , <<<<<<<<<<<<<<<<<<<<<<<<

� �;

�

3 SQL/DS Database Design

79

where sql-view-name, sql-user, column-name, table-name, and
dataview-name are valid dictionary member names.

Refer to "SQL-VIEW" on page 262 for details of the complete SQL-VIEW member type syntax.

Refer to "Generating and Previewing SQL-VIEW Definitions" on page 223 for details of
generating SQL-VIEW members via the SQL PREVIEW command.

Example of Generated SQL-VIEW Dictionary Member
The following SQL-VIEW dictionary member is generated for the table called DEPARTMENT,
in the Workbench Design Area (WBDA). The table was generated from an input entity called
DEPARTMENT-ENT.

The table DEPARTMENT has columns called DEPARTMENT-NO, DEPARTMENT-NAME,
and MANAGER-NO.

The name of the SQL-VIEW member is constructed from the table name concatenated with the
default suffix '-VIEW'. The name of the CREATOR-OWNER, assigned in the SQL PREVIEW or
SQL POPULATE command, is USERl.

ADD DEPARTMENT-VIEW;
SQL-VIEW
CREATOR-OWNER USER1
CONTAINS DEPARTMENT-NO, DEPARTMENT-NAME, MANAGER-NO
FROM DEPARTMENT
SEE DEPARTMENT-ENT FOR 'SOURCE'
;

Generated SYSTEM Member

Generated SYSTEM Definition
What follows is the subset generated by the SQL PREVIEW or SQL POPULATE command of the
complete SYSTEM dictionary member type syntax.

� �ADD� sql-view-name ;

� �SQL-VIEW

� �

CREATOR-OWNER sql-user

� �CONTAINS column-name
<<< , <<<<<<

� �SELECT ALL

� �FROM table-name

� �SEE dataview-view FOR 'SOURCE'
<< , <<<<<<<<<<<<<<<<<<<<

� �;

�

ASG-Manager Products Relational Technology Support: SQL/DS

80

where sql-member is a valid dictionary member name.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of the
complete SYSTEM member type syntax.

Refer to "Generating and Previewing a SYSTEM Definition" on page 224 for details of generating
SYSTEM members via the SQL PREVIEW command.

Example of Generated SYSTEM Dictionary Member
The following SYSTEM dictionary member is generated for a SQL table called DEPARTMENT,
in the Workbench Design Area (WBDA); INDEXES and VIEWS have also been specified for this
table in the SQL PREVIEW or SQL POPULATE command. The name of the SYSTEM has been
specified as SQL-SYSTEM-TEST.

ADD SQL-SYSTEM-TEST;
SYSTEM
CONTAINS DEPARTMENT-NO, DEPARTMENT-IND, DEPARTMENT-VIEW

;

� �ADD system-name� ;

� �SYSTEM

� �CONTAINS sql-member
<< , <<<<<

� �;

�

81

4 4Dictionary Definition

Figure 21 The Relationships between SQL/DS Member Types

In this diagram, the boxes represent the dictionary members which are used to document SQL/DS
objects in the dictionary. The lines between them represent the relationships between the SQL/DS
objects, which are established by clauses in the dictionary definition of the members which
document them.

Introduction to Documenting an SQL/DS DBMS
The Manager Products SQL/DS Definition Facility provides the dictionary member types which
enable you to document SQL/DS objects. Generally, there is a one-to-one correspondence
between an SQL/DS object available in the SQL/DS environment and the member in the
dictionary which documents it.

SQL-DBSPACE

ITEM

PROGRAM

SQL-VIEW

GROUP

SQL-TABLESQL-INDEX

SQL-PRIVILEGE

SQL-USER

ASG-Manager Products Relational Technology Support: SQL/DS

82

You can share dictionary definitions of SQL/DS objects with other environments: the ITEM and
GROUP members which document the columns of SQL/DS tables and views may also be used in
other applications in an installation, and perhaps in other database schemas.

You can use the status facilities to reflect different stages in the life cycle of an SQL/DS database.
The SQL/DS catalog cannot do this, since it records only the current status of the SQL/DS
environment. Therefore, the dictionary can be an important tool for change control in an SQL/DS
environment.

If you have the SQL/DS Database Design facility, you can populate your dictionary with
SQL-TABLE, SQL-VIEW, and SQL-INDEX members from the first-cut SQL/DS design which is
generated from the relational schema in the Workbench Design Area (WBDA). These members
would constitute a first-cut dictionary schema, which you can go on to develop and complete in
the dictionary.

Refer to ASG-Manager Products Advanced Status for information on the status facilities.

Documenting SQL/DS Objects

SQL/DS objects in the SQL/DS database schema are documented in the dictionary as members of
an equivalent type. The table below shows the correspondence between SQL/DS objects and the
dictionary member types which are used to document them. An SQL/DS dictionary member can
be said to represent the corresponding SQL/DS object.

A further 2 member types are available which enable you to document the Authorization ID of an
SQL/DS user, and the privileges held by users. They are the SQL-USER and SQL-PRIVILEGE
member types. You can use these 2 member types to model the SQL/DS security system. They are
also the member types from which SQL/DS access privileges are generated as SQL GRANT and
REVOKE statements.

Where possible, we have maintained consistency between the syntax of the SQL/DS member type
definitions and the syntax of the corresponding SQL/DS statements required to create the SQL/DS
objects. In most instances, the keywords in a member definition statement are identical to the
equivalent SQL/DS keywords, and they have the same meanings.

Table 11 Correspondence between Members and SQL/DS Objects

Dictionary SQL/DS Object

SQL-DBSPACE dbspace

SQL-INDEX index

SQL-TABLE table

SQL-VIEW view

ITEM (or GROUP) column

4 Dictionary Definition

83

In order that you do not have to duplicate effort and information when all or part of a member
definition is the same as that of another member, we have created a mechanism whereby two or
more members can share a definition. The AS clause allows you to refer to some of the clauses in
one member’s definition from another member, so that those parts of the definition which are
common to more than one member, are entered only once in the dictionary, and only one member
needs to be maintained.

It is important to note that the only clause which must be present in a member definition for it to
encode successfully is the member type identifier. This allows you to document a database schema
with as much, or as little, information in each object definition, as is necessary at any stage in the
development of the database schema. Definitions can be built up in an incremental top-down
approach, while giving you full interrogation and reporting capabilities.

Certain checks are made when a member is encoded, usually to ensure that members referred to
are of the correct type and that external names conform to the requirements of the target external
environment. The checks which are made on each clause are indicated in the section documenting
each member type.

Certain clauses must be present in an SQL/DS member definition when you generate an SQL
statement from it for generation to be successful. The clauses which must be present for the
successful generation of any particular SQL statement are indicated in the section documenting
each member type.

Refer to "Documenting SQL/DS Security Information" on page 88 for further information on
support for the SQL/DS security system.

Refer to "Defining an AS Clause" on page 277 for details of the use of the AS clause.

Clauses Establishing Relationships between SQL/DS Member
Types

The following table shows the relationships which are possible between SQL/DS member types,
and the clauses which document these relationships.

Table 12 Clauses which Create Relationships between Members

SQL-
DBSPACE

SQL-TABLE SQL- VIEW SQL-USER ITEM/
GROUP

PROGRAM

SQL-DBSPACE CREATOR
-OWNER

SQL-TABLE IN REFERENCES CREATOR
-OWNER

CONTAINS

SQL-VIEW FROM FROM CREATOR
-OWNER

CONTAINS

SQL-INDEX ON CREATOR
-OWNER

CONTAINS

ASG-Manager Products Relational Technology Support: SQL/DS

84

The member types listed along the top of the table are referred to by the member types listed down
the left-hand column via the clauses entered against them in the table. For example, the IN clause
in the SQL-TABLE member type establishes a relationship with the SQL-DBSPACE member
type.

Documenting the Columns of SQL/DS Tables and Views

Use ITEM and GROUP member-types to represent the columns of SQL/DS tables and views. In
ITEMs and GROUPs you can document the types of data which can be held in the columns which
they represent. These ITEMs and GROUPs are referred to by SQL-TABLE, SQL-VIEW,
SQL-INDEX, and SQL-PRIVILEGE members when SQL statements and host language data
structures are generated in SQL CREATE, SQL ALTER, SQL PRODUCE, and SQL GRANT
commands.

The data type of a generated column is determined firstly by the form keyword and version
specified in the clause in which columns are specified in an SQL-TABLE or SQL-VIEW member
definition, and secondly by the VERSION number specified in the member definition of the ITEM
which represents the column. The form keyword specified in the column definition clause applies
to all the ITEMS and GROUPs specified in the clause. If the first version of the specified form of
any individual ITEM does not hold the correct data type, you can specify for that ITEM a different
version (of the same form) which does hold the correct data type.

When PL/l, COBOL, or Assembler host language data structures are generated from an ITEM
which includes any of the following USAGE clauses:

• USAGE TIME

• USAGE DATE

• USAGE TIMESTAMP

the form-description is ignored. However, you should still define a form-description, in order to
ensure that the generated length of the field is compatible with environments other than SQL/DS.

In ITEMs which include a USAGE TIME or USAGE DATE clause, the form description should
be specified as a CHARACTER field with a length compatible with the default length specified in
the global variables CM_LOCAL_TIME and CM_LOCAL_DATE.

In an ITEM which includes a USAGE TIMESTAMP clause, the form description should be
specified as a CHARACTER field with a length of 26.

SQL-USER SYNONYMS SYNONYMS

SQL-PRIVILEGE ON ON GRANTOR
TO

CONTAINS ON

PROGRAM SEE

Table 12 Clauses which Create Relationships between Members

4 Dictionary Definition

85

The SQL data type of a column generated from a GROUP specified in the single-column clause
depends on the aggregate length and whether any of the contained ITEMs are of variable length. It
is one of the following:

To find out the length of the aggregate fields, enter:

PRODUCE RECORD-LAYOUT FROM group-name;

and examine the aggregate length of the record. If it is less than 255 and any of the fields in the
record layout are marked as 'VARIABLE', the SQL data type is VARCHAR(m), and if no fields
are marked as 'VARIABLE', the SQL data type is CHAR(m). If m is equal to, or greater than, 255,
the SQL data type is always LONG VARCHAR.

Note:
The data types of the columns generated will be expressed differently according to the destination
language (SQL, PL/l, COBOL, or Assembler).

CHAR(m) Where m is the aggregate length of fixed length fields which
constitute the group and m is less than 255 characters.

VARCHAR (m) Where m is the aggregate length of fields which constitute the
group and one or more of the fields are of variable length and m is
less than 255 characters.

LONG VARCHAR Where m is the aggregate length of fields which constitute the
group (regardless of whether none or some are of variable length)
and m is greater than or equal to 255.

Table 13 Documenting the Data Type of Columns in ITEM Members

Data Types by Language:

ITEM
USAGE
Clause

ITEM
Form-
Description

SQL PL1 COBOL PL1

TIME CHAR t TIME CHAR (t) PIC X(t) DS CLt

Other Accepted but should not be used.

TIME
STAMP

CHAR 26 TIMESTAMP CHAR (26) PIC X (26) DS CL26

Other Accepted but should not be used.

DATE Char d DATE CHAR (d) PIC X(d) DS CLd

Other Accepted but should not be used.

GRAPHIC CHAR p
p = 1..127

GRAPHIC(p) GRAPHIC
(p)

PIC G(p)
DISPLAY-1.

DS CL2p

CHAR p TO q
p = 1..127

VARGRAPHIC
(q)

GRAPHIC
(q) VAR

10 x.
49 x-L PIC

DS
H.CL2q

ASG-Manager Products Relational Technology Support: SQL/DS

86

CHAR p
p > 127

LONG
VARGRAPHIC

GRAPHIC
(p) VAR

S9 (4) COMP.
49 x-D PIC

DS
H.CL2p

CHAR p TO q
p > 127

GRAPHIC
(q) VAR

G (q/p)
DISPLAY-1.

DS
H.CL2q

Other Error.

MONEY Form-description is used as when no USAGE clause present.

POINTER Any Error.

None BIN p
BIN p TO q
BIN n.m
p, q, or n+m
= 1..4

SMALLINT FIXED BIN
(15)

PIC S9 (4) COMP DS H

None BIN p
BIN p TO q
BIN n.m
p, q, or n+m
= 5..9

INTEGER FIXED BIN
(31)

PIC S9 (9) COMP DS F

None BIN p
BIN p TO q
BIN n.m
p, q, or n+m
> 9

FLOAT (21) FLOAT BIN
(21)

COMP-1 DS E

None DEC n.m
n+m = 1..15

DECIMAL
(n+m, m)

FIXED DEC
(n+m, m)

PIC S9 (n) V9 (m)
COMP-3

DS
PLc'a.b'

None DEC p
p = 1..15

DECIMAL (p) FIXED DEC
(p)

PIC S9 (p)
COMP-3

DS
PLc'a'

None DEC p TO q
q = 1..15

DECIMAL (q) FIXED DEC
(q)

PIC S9 (q)
COMP-3

DS
PLc'b'

None DEC p
DEC p TO q
DEC n.m
p, q, or n+m
> 15

Error.

None FLOAT p
FLOAT p TO q
FLOAT n.m
p, q, or n+m
= 1..6

FLOAT (21) FLOAT BIN
(21)

COMP-1 DS E

Table 13 Documenting the Data Type of Columns in ITEM Members

Data Types by Language:

ITEM
USAGE
Clause

ITEM
Form-
Description

SQL PL1 COBOL PL1

4 Dictionary Definition

87

A PICTURE clause in an ITEM member definition is interpreted as a form-description of
CHARACTER p, where p is the number of bytes which are generated from the PICTURE clause
when a PRODUCE RECORD-LAYOUTS command is applied to the member. A column with a
data type of CHAR p, LONG VARCHAR, GRAPHIC p, LONG VARGRAPHIC, TIME,
TIMESTAMP, or DATE will (depending on the value of p and whether the ITEM has a USAGE
clause) be generated from the ITEM.

Columns with data types of VARCHAR(q), where q is greater than 254, can be generated from
ITEMS with:

• A form-description of CHARACTER p to q (where p is less than 255 and q has the desired
value)

and without

• A USAGE clause.

Columns with data types of VARGRAPHIC(q), where q is greater than 127, can be generated
from ITEMS with:

• A form-description of CHARACTER p TO q (where p is less than 128 and q has the
desired value)

and

• A USAGE clause of GRAPHIC.

p and q are integers.

None FLOAT p
FLOAT p TO q
FLOAT n.m
p, q, or n+m
> 6

FLOAT (53) FLOAT BIN
(53)

COMP-2 DS D

None CHAR p
p = 1..254

CHAR (p) CHAR (p) PIC X(p) DS CLp

None CHAR p TO q
p = 1..254

VARCHAR (q) CHAR (q)
VAR

10 x.
49 x-L PIC

DS H,CLq

None CHAR p
p > 254

LONG
VARCHAR

CHAR (p)
VAR

S9 (4) COMP.
49 x-D PIC

DS H,CLp

None CHAR p TO q
p > 254

CHAR (q)
VAR

X(q/p). DS H,CLq

None Other Error.

Table 13 Documenting the Data Type of Columns in ITEM Members

Data Types by Language:

ITEM
USAGE
Clause

ITEM
Form-
Description

SQL PL1 COBOL PL1

ASG-Manager Products Relational Technology Support: SQL/DS

88

t is a character field length with a default of 8 and d is a character field length with a default of 10.
The Systems Administrator can tailor the value of t and d to be compatible with your installation
settings for time and date.

Although the USAGE clause and not the form-description is used to generate data types of TIME,
DATE, or TIMESTAMP we recommend that you make the form-description match the data type
by specifying CHAR t, CHAR d, or CHAR 26.

n indicates the number of decimal digits before the decimal point and m indicates the number of
decimal digits after the decimal point.

x is the column name with underscores changed to hyphens. The data names x-L and x-D are the
result of suffixing x with -L or -D and then if necessary reducing the data name (using the Name
Reduction Process) to 30 characters so as not to exceed the COBOL limit for name lengths.

'c' is the number of bytes required to store the decimal-packed number and can be calculated
from one of the following formulas:

• DEC n.m

c = (n + m + 1) / 2

• DEC p

c = (p + 1) / 2

• DEC p TO q

c = (q + 1) / 2

rounded up to the nearest integer.

a is a sequence of 9s. The number of 9s is equal to the value of p or n.

b is a sequence of 9s. The number of 9s is equal to the value of q or m.

Refer to "Introduction to the Name Reduction Process" on page 279 for details of the name
reduction process.

Documenting SQL/DS Security Information

The SQL/DS security system enables you to control access to objects in the SQL/DS environment.
In order that you can document the SQL/DS security system we have provided the following
member types in the dictionary schema:

• SQL-USER

• SQL-PRIVILEGE.

An SQL/DS user must have an Authorization ID to be able to sign on to SQL/DS. This
Authorization ID is recorded in the dictionary as an SQL-USER member type.

4 Dictionary Definition

89

SQL/DS privileges are granted to users by means of an SQL GRANT statement. The privilege is
recorded in the SQL/DS catalog, and is used by SQL/DS whenever it is necessary to check if the
signed-on user has permission to perform a particular SQL/DS operation. You can document
privileges in the dictionary as SQL-PRIVILEGE members.

All privileges are granted by a particular user (the GRANTOR) to another user (the GRANTEE).

Together, the SQL-USER and SQL-PRIVILEGE member types allow you to document the
SQL/DS objects to which particular users have access, and their access rights. These members can
be interrogated by dictionary interrogation commands to provide Database Administrators with
the ability to analyze the dictionary model of the SQL/DS security system.

The SQL-USER and SQL-PRIVILEGE dictionary definitions are also used to generate SQL
GRANT, SQL REVOKE, and SQL CREATE SYNONYM statements.

Naming Conventions for SQL/DS Members

The Derivation of External Names from SQL/DS Members
When you generate SQL statements from SQL/DS members the external names of the SQL/DS
objects which they represent must conform to the naming rules for SQL/DS. In this case, the
external name of an object is the name by which it is known to SQL/DS and which is recorded in
the SQL/DS catalog, that is, the SQL/DS object name.

In addition, when you generate COBOL, PL1, or Assembler host language data structures (by the
SQL PRODUCE command) from an SQL/DS member which contains columns, the external
names of the columns must also conform to the rules appropriate for the relevant host language. In
this case, the external name of an object is the name by which it is known by COBOL, PL1, or
Assembler.

In order to generate an acceptable external name, a number of processes are applied. Therefore,
when you document an SQL/DS member in the dictionary, it is important to know how the
external name will be derived from the dictionary definition.

If you want to be able to generate external names from aliases, your Systems Administrator must
ensure that your SQL/DS profile is tailored appropriately, and that an Alias Table exists for each
language you want to generate.

In all external names, except synonyms, hyphens separating the constituent parts of names are
changed to underscores on generation of an SQL statement.

All derived external names are subjected to a final check, on generation, to ensure they are valid
for the relevant external environment. The check includes ensuring that external names are not
longer than permitted by the relevant external environment. If a name is too long, then the Name
Reduction Process takes place.

Refer to "Introduction to the Name Reduction Process" on page 279 for details of the Name
Reduction Process.

ASG-Manager Products Relational Technology Support: SQL/DS

90

The Derivation of Column Names from SQL/DS Members

The names of columns in tables and indexes are derived from one of the sources listed below. If an
acceptable name is not found in the first source, it will be sought in the second, and so on.

• The first source is the name specified in the KNOWN-AS clause of the SQL-TABLE or
SQL-INDEX in which the columns are defined

• The second source is an alias of the ITEM or GROUP member which represents the column
(assuming your environment is tailored to generate aliases as external names). Names
derived from this source are checked by the Name Reduction Process.

• The third source is the dictionary name of the ITEM or GROUP member which represents
the column. Names derived from this source are checked by the Name Reduction Process.

The above conditions apply to the columns in a view, unless a column-name is specified in the
COLUMN-NAME clause of the SQL-VIEW member which represents the view. The name
specified there will override any KNOWN-AS name, alias, or member name.

The unqualified SQL/DS name of a column may be no longer than 18 characters.

The Derivation of the Names of Tables, Views, Indexes, and Dbspaces from SQL/DS
Members

The names of tables, views, indexes, and dbspaces are derived from one of the sources listed
below. If an acceptable name is not found in the first source, it will be sought in the second.

• The first source is an alias name specified in the members which represent them (assuming
your environment is tailored to generate aliases as external names)

• The second source is the dictionary names of the members which represent them. Names
derived from this source are checked by the Name Reduction Process.

The unqualified SQL/DS object names for tables, views, indexes, and dbspaces may be no longer
than 18 characters.

The Derivation of the Names of Synonyms, Constraints, Correlations, and Programs
The SQL/DS object names of synonyms, constraints, correlations, and programs are derived
directly from the corresponding names specified in the dictionary definitions where they appear.
The names of synonyms, constraints, and correlations may be no longer than 18 characters. The
names of programs may be no longer than 8 characters.

Note:
On generation of an SQL statement, a hyphen in a synonym-name specified in a dictionary
member is not translated into an underscore. A hyphen in a constraint-name, correlation-name, or
program-name is translated into an underscore.

4 Dictionary Definition

91

The Derivation of SQL/DS User Names
The user name used to qualify the SQL/DS names of tables, views, indexes, and dbspaces is
derived from one of the sources listed below. If an acceptable name is not found in the first source,
it will be sought in the second.

• The first source is an alias of the SQL-USER member referred to in the
CREATOR-OWNER clause of the member representing the object being qualified
(assuming your environment is tailored to generate aliases as external names)

• The second source is the dictionary name of the SQL-USER referred to in the
CREATOR-OWNER clause of the member representing the object being qualified.

An SQL/DS user name (that is an Authorization ID) may be no longer than 8 characters.

Naming Guidelines for SQL/DS Members
Although mechanisms are provided to derive names for SQL/DS objects which will be acceptable
when SQL/DS member types are used in the generation of SQL statements or host language data
structures, you should be aware that, in many cases, arriving at an acceptable name may involve
some loss of information, that is, you may not necessarily know the name of the dictionary
member which documents an SQL/DS object. This is the case when names are reduced by the
Name Reduction Process and when you specify names in the KNOWN-AS clauses of
SQL-TABLE, SQL-VIEW, SQL-PRIVILEGE, and SQL-INDEX member definitions. When such
a loss of information does take place, it may be no longer possible to determine unambiguously the
dictionary origin of an external name.

It is important, therefore, to establish a naming strategy before you start to define SQL/DS
members in your dictionary.

The simplest approach to a reliable naming strategy is to ensure that all external names of SQL/DS
objects are derived directly from the dictionary member name of the member which represents it
in the dictionary.

You would not be able to define column-names (defined in COLUMN-NAME clauses) in
SQL-VIEWS, or known-as names (defined in KNOWN-AS clauses) in SQL-TABLEs,
SQL-VIEWs, SQL-PRIVILEGEs, and SQL-INDEXes. Nor would you be able to define alias
names (in ALIAS clauses) for any member representing a DB2 object.

A more efficient alternative to omitting ALIAS clauses, is to de-activate the ALIAS searching
mechanism, since the extra work involved in deriving external names from aliases can increase
processing time, by up to three times.

Since the external name will be taken from the dictionary name of the member which represents an
SQL/DS object, there will be a direct correspondence between the dictionary and external
environments. Therefore, it will be straightforward to match SQL/DS objects with the dictionary
members which represent them, since they will have the same name in the dictionary as they do in
the SQL/DS catalog, and in host language data structures where they are used.

This is the simplest approach and the most efficient in terms of processing time.

ASG-Manager Products Relational Technology Support: SQL/DS

92

However, this is not practical in all environments. For example, you may wish to include in your
SQL/DS schema an already existing GROUP or ITEM with a name the length of which exceeds
the allowed maximum for the target external environment. This situation may arise when, for
instance, the external environment is an Assembler language where the maximum length of names
is eight characters.

In such a situation, you should consider using aliases which correspond to the external
environment in question. If, for example, you use SQL and COBOL, set up SQL and COBOL
aliases for each member. Although aliases are not checked to ensure their uniqueness in the
dictionary (which means that two unrelated members may have the same alias), interrogation
commands which can detect a duplicate alias can be used to guard against alias duplication.

For instance, the dictionary interrogation:

WHOSE SQL ALIAS IS 'EMP-MAIN-TAB';

returns all members of the type SQL-TABLE which have this alias. You can then change the alias
names of all but one of these SQL-TABLE members, in order to achieve unique names. The table
name 'EMP_MAIN_TAB' in the SQL/DS catalog would then correspond with the SQL ALIAS of
one and only one SQL-TABLE dictionary member.

If you use COBOL, some other, more descriptive, variant is possible, since COBOL allows names
of up to 30 characters in length, while SQL allows a maximum of only 18 characters. For example,
the COBOL name of the table could be EMPLOYEE-MAIN-TABLE (which is 19 characters
long).

In conclusion, think carefully about your choice of dictionary and external names. If necessary,
use aliases and interrogation capabilities to the full to implement a sound naming strategy which
will allow for a direct correspondence between your SQL/DS dictionary schema, the database
schema which it represents, and other external environments in which objects may be used.

Processing Your SQL/DS Members

You can process and interrogate your SQL/DS dictionary schema in the usual way using Manager
Products dictionary management commands.

The interrogation keywords:

• SQL-DBSPACE

• SQL-INDEX

• SQL-PRIVILEGE

• SQL-TABLE

• SQL-USER

• SQL-VIEW

4 Dictionary Definition

93

are added to the member-type keywords available for use in the following commands:

• BULK

• GLOSSARY

• LIST

• PERFORM

• REPORT

• WHICH.

In addition, the alias-type keyword SQL is available in the ALIAS clause. If you define an SQL
ALIAS for an SQL/DS member, you can ensure that the name you define will be used in the
SQL/DS environment.

You can use all the clauses which establish relationships between SQL/DS members as keywords
in the VIA clause of the WHICH and WHAT commands. These clauses are all of those which
establish relationships between members, and the AS clause.

For example, to find out the ITEMs and GROUPs which constitute the SQL-TABLE,
EMP-TABLE, enter the following command:

WHICH ITEMS, GROUPS DIRECTLY CONSTITUTE EMP-TABLE VIA CONTAINS ;

You can use all the clauses of SQL/DS members as interrogation keywords with the FOR clause of
the GLOSSARY command and the HAS/HAVE clause of the WHICH command.

For example, to find out the creator-owner of every SQL-TABLE in a dictionary, enter the
following command:

GLOSSARY FOR SQL-TABLE GIVING CREATOR-OWNER ;

To find out which SQL-PRIVILEGE members document SYSTEM privileges, enter the following
command:

WHICH SQL-PRIVILEGES HAVE SYSTEM SPECIFIED

Refer to the ASG-Manager Products Dictionary/Repository Guide for details of the GLOSSARY,
WHAT, and WHICH commands.

ASG-Manager Products Relational Technology Support: SQL/DS

94

95

5 5Implementation and Maintenance

Figure 22 Exporting SQL Statements and Data Structures

Introduction to Generating SQL Statements and SQL/DS Host
Language Data Structures

Overview of Generating SQL Statements and SQL/DS Host Language Data
Structures

The Corporate Dictionary/Repository Definition Export for SQL/DS facility enables you to
generate SQL statements and host language data structures from the definition of members in the
dictionary. You can also calculate the size of tables and their rows.

The dictionary members concerned are those provided by the SQL/DS Definition facility to
document in the dictionary the objects which exist or are to be created in your SQL/DS
environment.

You can automatically file generated output in a USER-MEMBER and subsequently transfer it to
an external file which can be used as input to your SQL/DS environment. You can also use
Dynamic SQL Services to dynamically submit the SQL statements you have generated, to your
SQL/DS environment, from within Manager Products.

CORPORATE
DICTIONARY/
REPOSITORY

table
layouts

analysis
table
and
row
sizes

DROP
impact
analysis
reports

generated
SQL statement

generated host
language data
structure

(ACQUIRE)
(ALTER)
(COMMENT ON)
(CREATE)
(DROP)
(GRANT)
(LABEL ON)
(REVOKE)

PROGRAM
SOURCE
(BAL,
COBOL,
PL1)

SQL/
DS

ASG-Manager Products Relational Technology Support: SQL/DS

96

Your SQL/DS environment can therefore be documented in the dictionary and implemented and
maintained with output generated from the dictionary.

The SQL ACQUIRE, SQL ALTER, SQL COMMENT, SQL CREATE, SQL DROP, SQL
GRANT, SQL LABEL, SQL REVOKE, and SQL SYNONYM commands generate the following
SQL statements:

ACQUIRE GRANT
ALTER LABEL ON
COMMENT ON REVOKE
CREATE CREATE SYNONYM
DROP DROP SYNONYM

The SQL PRODUCE command generates an Assembler, COBOL, or PL1 host language data
structure. These are for use, in conjunction with embedded SQL statements, within application
programs. You can also use the SQL PRODUCE command to generate table layouts which
document the column structure of tables and views in a tabular format.

You can analyze the dictionary before applying the SQL statements you have generated to your
SQL/DS environment:

• The SQL DROP command generates both an SQL DROP statement and a report showing
the impact of that statement

• The SQL SIZE command calculates the size of a table and its rows. You can therefore
estimate the number of pages required in a dbspace before generating an SQL ACQUIRE
DBSPACE statement.

The Systems Administrator can tailor the SQL statements and host language data structures
generated to suit your environment. For example SQL/DS object names in SQL statements and
external names in host language data structures can be derived from aliases instead of member
names. If your installation uses the SQL and COBOL languages you could specify that SQL/DS
object names will be derived from SQL aliases and external names from COBOL aliases.

Refer to Chapter 7, "Dynamic SQL Services," on page 107 for details of Dynamic SQL Services.

Generating Column Data Types

You can generate data types for columns in a table and for column variables in a host language
data structure.

The SQL ALTER and SQL CREATE commands generate SQL statements specifying the SQL/DS
data type of columns in tables. The SQL PRODUCE command generates Assembler, COBOL, or
PLl host language data structures for tables and views with column variables corresponding to the
SQL/DS data types.

The data types are derived from the definition of the ITEMs and/or GROUPs specified in the
CONTAINS clause of the SQL-TABLE or SQL-VIEW member from which the SQL statement or
host language data structure is generated.

Refer to "Documenting the Columns of SQL/DS Tables and Views" on page 84 for details of how
the data type of columns and column variables are derived from ITEMs and GROUPs.

5 Implementation and Maintenance

97

Submitting Generated Output to Your Relational Environment
You will want to submit to your relational environment the SQL statements and host language data
structures you have generated using the D32 or SQL commands.

Using Dynamic SQL Services you can dynamically submit the SQL statements you have
generated, to your relational environment, from within Manager Products. To use Dynamic SQL
Services you must have either DB2 or SQL/DS available on the same CPU and operating system
as Manager Products.

Alternatively you can file the generated output in a USER-MEMBER by specifying an ONTO
clause in a DB2 or SQL command, and then use the TRANSFER command to transfer the output
from the USER-MEMBER into an external file. The external file can be used as input to your
relational environment or for inclusion in your application programs.

Dynamic SQL Services can only submit SQL statements that can be dynamically prepared for
execution. You therefore cannot submit SQL DECLARE statements using Dynamic SQL
Services.

SQL DECLARE statements and host language data structures are intended to be imbedded in
application programs and must be transferred to an external file by a TRANSFER command. Your
application program can then use SQL COPY or INCLUDE statements to reference the external
file.

Refer to Chapter 7, "Dynamic SQL Services," on page 107 for details of Dynamic SQL Services.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

Tailoring SQL Statements and SQL/DS Host Language Data
Structures

Introduction to Tailoring

How to Tailor Generated Output
The Systems Administrator can create a SQL/DS profile which will tailor the SQL statements and
host language data structures generated.

The SQL/DS profile is an Executive Routine containing SET directives which by assigning
alternative values to variables allows you to control how output is generated. For example,
SQL/DS object names in SQL statements can be derived from aliases instead of member names.

You must first create and execute an Executive Routine which with the following directives
declares a Global Variable set to the name of the SQL/DS profile:

GLOBAL GL_PROFILENAME
SET GL_PROFILENAME :sql/ds-profile:

where sql/ds-profile is the name of the SQL/DS profile Executive Routine.

ASG-Manager Products Relational Technology Support: SQL/DS

98

SQL/DS profiles can be set up for individual or all users whenever they logon, by creating the
Executive Routine which declares the Global Variable as a User Defined Profile, or by executing
the Executive Routine from within a Logon Profile or Global Profile.

If you wish to derive SQL/DS object names in SQL statements and external names in host
language data structures from aliases you must also create an Alias Table for each of the languages
that can be generated (Assembler, PLI, COBOL, and SQL). Alias Tables are Executive Routines
containing SET directives.

An EXECUTIVE member named MPR-EX-PRF is provided as an example of a SQL/DS profile.
Four EXECUTIVE members named MPR-EX-BAL, MPR-EX-PLI, MPR-EX-COB, and
MPR-EX-DB2 are provided as examples of Alias Tables for the Assembler, PLI, COBOL, and
SQL languages. These EXECUTIVE members can be used as models.

All users who create their own SQL/DS profile in a User Executive Routine should do so under
the supervision of the Systems Administrator.

Refer to "Glossary" on page 283 for a brief description of the terms used in this introduction.

Figure 23 How to Tailor SQL Statements and Data Structures

The illustration includes the EXECUTIVE members MPR-EX-PRF, MPR-EX-DB2,
MPR-EX-COB, MPR-EX-PLI, and MPR-EX-BAL provided by ASG as examples.

The Directives that Tailor SQL Statements and Host Language Data Structures
By entering particular directives in your SQL/DS profile you can tailor the SQL statements and
host language data structures generated.

Logon/Global Profile
instructions
executive-routine;
instructions

executive-routine
MPXX
LITERAL :
GLOBAL GL_PROFILENAME
SET GL_PROFILENAME :MPR-EX-PRF:

MPR-EX-PRF
directives
SET CM_SQLALIAS :MPR-EX-DB2:
SET CM_COBOLALIAS :MPR-EX-COB:
SET CM_PL1ALIAS :MPR-EX-PLI:
SET CM_BALALIAS :MPR-EX-BAL:

MPR-EX-BAL
directives

MPR-EX-PLI
directives

MPR-EX-COB
directives

MPR-EX-DB2
directives

A

5 Implementation and Maintenance

99

To declare a Global Variable identifying the SQL/DS profile:

GLOBAL GL_PROFILENAME and SET GL_PROFILENAME

To generate SQL CREATE and COMMENT ON statements at the same time:

SET CM_COMMENTOPT

To generate SQL CREATE and LABEL ON statements at the same time:

SET CM_LABELOPT

To generate a host language indicator structure:

SET CM_INDICATOROPT

To generate column variables in host language data structures that are compatible with your
SQL/DS installation settings for date:

SET CM_LOCAL_DATE

To generate column variables in host language data structures that are compatible with your
SQL/DS installation settings for time:

SET CM_LOCAL_TIME

To display internal diagnostic output:

SET CM_DEBUG

To derive SQL/DS object names in SQL statements from aliases:

SET CM_SQLALIAS

To derive external names in structures from aliases:

SET CM_BALALIAS

To derive external names in from aliases:

SET CM_COBOLALIAS

To derive external names in from aliases:

SET CM_PLIALIAS:

To specify the type of alias from which SQL/DS object names and external names will be derived:

SET CM_ALIAS(n)

ASG-Manager Products Relational Technology Support: SQL/DS

100

To stop SQL/DS object names and external names being derived from aliases by deactivating
Alias Tables:

SET CM_ALIASNUM 0

Displaying Internal Diagnostic Output
You can tailor the output of the SQL ACQUIRE, SQL ALTER, SQL COMMENT, SQL
CREATE, SQL DROP, SQL GRANT, SQL LABEL, SQL PRODUCE, SQL REVOKE, SQL
SIZE, and SQL SYNONYM commands so that internal diagnostic output is printed.

It may sometimes be necessary for ASG to request a print-out of this internal diagnostic output in
order to satisfy a request for maintenance. There are two levels of internal diagnostic output, either
or both of which can be printed.

To display level 1 diagnostic output, enter the following SET directive in your SQL/DS profile:

SET CM_DEBUG :DEBUG1:

To display level 2 diagnostic output, alter the SET directive to read:

SET CM_DEBUG :DEBUG2:

To display both level 1 and level 2 diagnostic output, alter the SET directive to read:

SET CM_DEBUG :DEBUG3:

Level 1 diagnostic output is a list of the variables and values initially loaded from member
definitions for use in generation. It precedes normal output generated by the command.

Level 2 diagnostic output is a list of these variables and values as they have been
subsequently generated in an SQL statement or host language data structure. It follows normal
output generated by the command.

For example if a local name, member name, or alias exceeds the length permitted for SQL/DS
object names or external names it will, when generated, be reduced in length by the name
reduction process. The full name will be shown in level 1 and the reduced name in level 2
diagnostic output.

Only level 1 diagnostic output is printed by the SQL SIZE command as it does not generate SQL
statements or host language data structures.

Internal diagnostic output is not filed on the MP-AID when an ONTO clause is specified in a
command. The NOPRINT keyword will not prevent internal diagnostic output being printed.

To return to the default in which no diagnostic output is printed, either remove the relevant SET
directive or alter it to read:

SET CM_DEBUG :OFF:

5 Implementation and Maintenance

101

Refer to "Introduction to the Name Reduction Process" on page 279 for details of the name
reduction process.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause
and NOPRINT keyword.

Generating Object Names and External Names from Aliases

Deriving SQL/DS Object Names and External Names from Aliases
You can tailor the output of the SQL ACQUIRE, SQL ALTER, SQL COMMENT, SQL
CREATE, SQL DROP, SQL GRANT, SQL LABEL, SQL PRODUCE, SQL REVOKE, and SQL
SYNONYM commands so that SQL/DS object names in SQL statements and external names in
host language data structures are derived from aliases.

To generate aliases as SQL/DS object names in SQL statements, enter the following SET directive
in your SQL/DS profile:

SET CM_SQLALIAS :sql-alias-table:

To generate aliases as external names in Assembler, COBOL, and PLI host language data
structures, enter the following SET directives in your SQL/DS profile:

SET CM_BALALIAS :assembler-alias-table:

SET CM_COBOLALIAS :cobol-alias-table:

SET CM_PLIALIAS :pli-alias-table:

where sql-alias-table, assembler-alias-table, cobol-alias-table, and
pli-alias-table are Executive Routines containing SET directives which specify the types
of alias from which the SQL/DS object or external name will be derived.

A separate Alias Table should be created for each language that can be generated (Assembler,
COBOL, PLI, and SQL). In each Alias Table you specify the types of alias from which you want
SQL/DS object or external names to be derived when generating that language.

For example, when generating COBOL host language data structures you may want to derive
external names from COBOL aliases, but when generating SQL statements to derive SQL/DS
object names from SQL aliases. To do so you would specify the COBOL alias type in the
cobol-alias-table and the SQL alias type in the sql-alias-table.

Deriving SQL/DS Object Names and External Names from Particular Types of Aliases
You can derive SQL/DS object names in SQL statements and external names in host language data
structures from particular types of alias.

To specify the type of alias from which SQL/DS object or external names will be derived, enter
the following SET directive in each Alias Table:

SET CM_ALIAS(n) :alias-type:

ASG-Manager Products Relational Technology Support: SQL/DS

102

where alias-type is any of the types of aliases available in your dictionary. A separate SET
directive must be entered for each alias-type.

Use the SHOW ALIAS-TYPES command to find out the types of alias available in your
dictionary.

Alternative keywords (alias-type synonyms) can be specified in the DALIAS installation macro
for each alias-type. SQL/DS object names and external names are only generated correctly when
you use the first alias-type keyword specified in the DALIAS macro.

Refer to your installation manual for details of the DALIAS macro.

where n is an integer specifying the sequence in which each alias-type will be interrogated to
derive the SQL/DS object or external name, if more than one SET directive has been entered.

The SQL/DS object or external name will be derived from the first of the interrogated alias-types
found in the encoded record of the member from which the output is being generated.

Alias-type 1 will be interrogated first, and if it is not present, alias-type 2 is interrogated next and
so on until an alias-type which is interrogated is found in the members encoded record.

If alias-type is NO-TYPE the SQL/DS object or external name will be derived from the first
general alias interrogated. You can only derive the SQL/DS object or external name from the first
general alias in the members encoded record.

If a member has no ALIAS clause or no ALIAS clause of the types specified in the Alias Table
then the default (the member’s name) will be generated as the SQL/DS object or external name.

Four EXECUTIVE members named MPR-EX-BAL, MPR-EX-PLI, MPR-EX-COB, and
MPR-EX-DB2 are provided as examples of Alias Tables for the Assembler, PLI, COBOL, and
SQL languages and can be used as models.

To return to the default either remove the relevant directives or enter the SET directive:

SET CM_ALIASNUM 0

in a particular Alias Table to deactivate that Alias Table, or in the SQL/DS profile to deactivate all
the Alias Tables.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of the SHOW
ALIAS-TYPES command.

Generating SQL CREATE, LABEL ON, and COMMENT ON Statements from One
Member at the Same Time

You can tailor the output of the SQL CREATE command so that SQL CREATE, COMMENT
ON, and/or LABEL ON statements are generated from the same member at the same time.

5 Implementation and Maintenance

103

To generate SQL CREATE and COMMENT ON statements enter the following SET directive in
your SQL/DS profile:

SET CM_COMMENTOPT :ON:

To generate SQL CREATE and LABEL ON statements, enter the following SET directive in your
SQL/DS profile:

SET CM_LABELOPT :ON:

Processing times are faster if these SQL statements are generated at the same time rather than with
separate SQL CREATE, SQL COMMENT, and SQL LABEL commands.

You can still generate only SQL COMMENT ON or LABEL ON statements with the SQL
COMMENT and SQL LABEL commands.

To return to the default in which separate SQL CREATE, SQL COMMENT, and SQL LABEL
commands are required to generate SQL CREATE, COMMENT ON, and LABEL ON statements,
either remove the relevant SET directives or alter them to read:

SET CM_COMMENTOPT :OFF:

SET CM_LABELOPT :OFF:

Refer to "Member Type and Command Descriptions" on page 143 for an example of SQL
CREATE, COMMENT ON, and LABEL ON statements generated from an SQL-TABLE member
definition.

Refer to "Member Type and Command Descriptions" on page 143 for details of the SQL
CREATE, SQL COMMENT, and SQL LABEL commands.

Generating a Host Language Indicator Structure

You can tailor the output of the SQL PRODUCE command so that a host language indicator
structure is generated.

To generate a host language indicator structure, enter the following SET directive in your SQL/DS
profile:

SET CM_INDICATOROPT :ON:

Indicator structures consist of an array of half word binary variables with as many elements as
there are columns in the table. The indicator variables can be referenced in programs.

To return to the default in which no indicator structure is generated, either remove the relevant
SET directive or alter it to read:

SET CM_INDICATOROPT :OFF:

Refer to "SQL PRODUCE" on page 236 for details of the SQL PRODUCE command.

ASG-Manager Products Relational Technology Support: SQL/DS

104

Tailoring DATE and TIME Character Field Lengths

You can tailor the character field lengths the SQL PRODUCE command will generate for column
variables in host language data structures that correspond to a SQL/DS data type of DATE or
TIME. You should set them to the value of the LOCAL DATE LENGTH and LOCAL TIME
LENGTH installation options for your SQL/DS environment.

To tailor character field lengths corresponding to DATE, enter the following SET directive in your
SQL/DS profile:

SET CM_LOCAL_DATE n

where n is the character field length to be generated. The minimum value is 10 which is also the
default.

To tailor character field lengths corresponding to TIME, enter the following SET directive in your
SQL/DS profile:

SET CM_LOCAL_TIME n

where n is the character field length to be generated. The minimum value is 8 which is also the
default.

To return to the defaults either remove the relevant SET directives or specify a value of 10 and 8
for n.

Refer to "SQL PRODUCE" on page 236 for details of the SQL PRODUCE command.

105

6 6Generation of SQL/DS Application
Programs

This chapter will be used to document future enhancements to the support ManagerProducts
provides for your SQL/DS environment.

Figure 24 Dynamic SQL Services

ASG-MANAGER Products ENVIRONMENT

DICTIONARY

generated
SQL

MPAID

generated
SQL

Executive
Routines

ISQL (SQL statement)
 (HELP)

result tables

SQLCODEs & HELP text

populated Procedures
Language Variables

RELATIONAL
ENVIRONMENT

returned

embedded SQL

ASG-Manager Products Relational Technology Support: SQL/DS

106

107

7 7Dynamic SQL Services

Introduction to Dynamic SQL Services

Overview of Dynamic SQL Services
The Dynamic SQL Services feature enables you to dynamically submit SQL statements to your
DB2 or SQL/DS environment, and receive the results, from within Manager Products.

Dynamic SQL Services are provided by the Translation and Transfer Engine facility.

To use Dynamic SQL Services you must have Manager Products and either DB2 or SQL/DS
available on the same CPU and operating system.

You can submit any SQL statement which can be dynamically prepared for execution. SQL
SELECT statements must conform to the specifications of a full select statement. The SQL
statements can be submitted with the ISQL command or embedded in Executive Routines.

Using the Manager Products Procedures Language these Executive Routines can update your DB2
or SQL/DS environment with information held in the dictionary, or, import information from DB2
or SQL/DS into the Manager Products environment.

SQL statements can be submitted both interactively and in batch.

Dynamic SQL Services therefore provide a dynamic link between your DB2 or SQL/DS
environment and the integrated Manager Products Family of Program Products.

Refer to "ISQL" on page 149 for details of the ISQL command.

Refer to "Creating Executive Routines to Dynamically Submit SQL Statements to Your DB2 or
SQL/DS Environment" on page 109 for details of the Executive Routines with which you can
dynamically submit SQL statements.

Security and Authorization
The SQL statements you can submit using Dynamic SQL Services are determined by the
privileges granted to your authorization ID in DB2 or SQL/DS.

Dynamic SQL Services takes your operating system logon in the environment in which DB2 or
SQL/DS operates, and not your ASG-ControlManager Logon Identifier, as your authorization ID.

ASG-Manager Products Relational Technology Support: SQL/DS

108

For example, if SQL/DS is operating in a VM environment, the authorization ID is the CMS
logon, for DB2 environments operating in a TSO environment, it is the TSO logon.

Output Printed by Dynamic SQL Services
The output printed by Dynamic SQL Services will vary depending on your relational environment,
the method by which you are submitting SQL statements, and whether or not the SQL statements
are successful.

SQL statements submitted with an ISQL command are printed. SQL statements submitted from
within Executive Routines are not printed.

A result table is printed in response to a successful SQL SELECT statement submitted with the
ISQL command or from within an Executive Routine calling the COMMAND member
MPDYDSSSEL.

Result tables are not printed in response to successful SELECT statements submitted from within
an Executive Routine calling the COMMAND member MPDYDSSSEL.

You can limit the number of rows to be included in a result table by specifying an integer in the
ISQL command or by including the variable SQLI_ROWS in an Executive Routine.

If you do not specify a maximum number of rows then the number printed is determined by the
maximum number of lines of output that can be printed in any output buffer. The Systems
Administrator can specify the maximum line limit with the SET OUTPUT-LINE-LIMIT
command. Use the QUERY OUTPUT-LINE-LIMIT command to find out the current line limit.
The maximum line limit does not affect result tables printed in response to SQL statements
submitted in batch.

If a row in a result table cannot be printed on a single line on the current output device then the
row will wrap around to the next line. Each column in a result table is truncated to a width of thirty
characters unless the result table contains two or less columns in which case the full width of
columns is displayed.

A ? symbol in a result table indicates that a value in a column is null or that the value is of a data
type that cannot be printed within the Manager Products environment. You can display values
with non printable data types by specifying an SQL Scalar Function in the SELECT statement in
order to change the representation of the value.

To display values with data types of TIME, TIMESTAMP, or DATE in a result table you must
include a CHAR function in the SELECT statement. To display values with data types of FLOAT
in a result table you must include a DECIMAL function in the SELECT statement.

Commas are, where appropriate, included in values having an INTEGER data type when the value
is displayed in a result table.

You can create an Executive Routine which generates result tables in a format which suits your
environment by calling the COMMAND member MPDYDSSSEL and using the Procedures
Language to tailor the output it returns.

7 Dynamic SQL Services

109

A DB2 or SQL/DS SQLCODE is displayed in response to any unsuccessful SQL statements you
have submitted. SQL/DS SQLCODEs are followed by explanatory SQL/DS HELP text. DB2
SQLCODES are not followed by HELP text.

The Systems Administrator can create HELP text for both DB2 and SQL/DS which suits your own
environment by tailoring the EXECUTIVE member MPDYDSSXIT. Tailored HELP text is only
displayed in response to SQL statements submitted from within an Executive Routine.

Refer to the ASG-Manager Products Systems Administrator’s Manual for details of the SET
OUTPUT-LINE-LIMIT command.

Refer to "The COMMAND and EXECUTIVE Members Used in Dynamic SQL Services" on
page 115 for details of the COMMAND and EXECUTIVE members provided for use in Dynamic
SQL Services.

Creating Executive Routines to Dynamically Submit SQL
Statements to Your DB2 or SQL/DS Environment

Introduction to Dynamically Submitting SQL Statements from within Executive
Routines

Overview of Submitting SQL Statements from within Executive Routines
You can create Executive Routines which dynamically submit embedded SQL statements to your
DB2 or SQL/DS environment.

By combining SQL statements and the Manager Products Procedures Language you can create
Executive Routines which can:

• Create and populate a new table

• Insert rows into an existing table

• Import information from tables and views into the Manager Products environment

• Submit any SQL statement that can be dynamically prepared for execution.

The different Executive Routines carrying out these tasks must call particular COMMAND and
EXECUTIVE members and contain particular Procedures Language Command Variables.

The Command Variables contain the information transferred between Manager Products and your
relational environment by the Executive Routine.

When creating and populating a new table, or inserting rows into an existing table, the Command
Variables define the objects to be created. For example, a variable could define a column and the
values assigned to the different elements of the variable would define the values in the column.
You can use the DACCESS and DRETRIEVE commands to assign information filed in the
dictionary to the variables.

ASG-Manager Products Relational Technology Support: SQL/DS

110

When importing information into the Manager Products environment the information about a
particular object is assigned to the relevant variable. You can use the Procedures Language to
manipulate the imported information or you can apply the tools in the Manager Products Family of
Program Products to it. For example, you could generate result tables and display them in your
own format.

By tailoring the EXECUTIVE member MPDYDSSXIT the Systems Administrator can create
HELP text which is printed in response to the SQL statements you have submitted from within an
Executive Routine.

Variables and the Column and Row Structure of Tables and Views
Each column in a table or view is represented within an Executive Routine by a Command
Variable. Command Variables are arrays and can contain a maximum of 60,000 separate array
elements. Each element represents a value in the column.

For example, three Command Variables named V1, V2, and V3 each having three elements,
would represent a table with three columns and rows as follows:

Figure 25 Defining a Table with Command Variables

If the Command Variables in an Executive Routine used to create or insert rows into a table each
have different numbers of elements, then the number of rows in the table will equal the array with
the maximum number of elements, and null values are entered in those columns for which no
element was specified.

For example, the Command Variables V1, V2, and V3 (V1 having three elements, V2 two
elements, and V3 one element) would create a table with three columns and rows as follows:

Figure 26 Creating a Table with Command Variables

You can import information about tables and views. The values in columns are assigned to
Command Variables which you can name. As many elements are created for these variables as are
required to contain all the values in a column. Null values are assigned to Command Variables as
undefined (null) values.

Command Variables: Table:

V1(1) value V2(1) value V3(1) value <
V1(2) value V2(2) value V3(2) value <
V1(3) value V2(3) value V3(3) value <

V1 V2 V3
value
value
value

value
value
value

value
value
value

Command Variables: Table:

V1(1) value V2(1) value V3(1) value
V1(2) value V2(2) value
V1(3) value

V1 V2 V3
value
value
value

value
value
null

value
null
null

7 Dynamic SQL Services

111

For example, information about a table with null values would be assigned to the elements of the
Command Variables V1, V2, and V3 as follows:

Figure 27 Assigning Information about a Table to Command Variables

How to Define the Data Type and Values of Columns
You can create Executive Routines which create and populate, or insert rows into, a table.

The columns in a table are defined within the Executive Routine by Command Variables. The
values within the column are defined by the Procedures Language values assigned to the different
elements of the Command Variable. The data type of the column is determined by the value
assigned to the first element of the Command Variable.

Command Variables can only be assigned a numeric or character value. Character values include
alphanumeric strings. A column is defined as having an INTEGER data type if the first element of
the variable is assigned a numeric value or if it is not assigned any value. A column is defined as
having a VARCHAR 254 data type if the first element of the variable is assigned a character
value.

For example, you could define two columns and the values they contain by including the
following variables and directives in an Executive Routine:

COMMAND AREA
COMMAND QTY
AREA(l) = NORTH
AREA(2) = SOUTH
QTY(2) = 550

The first column would be called AREA and have a data type of VARCHAR(254). The column
would contain the two character values NORTH and SOUTH.

The second column would be called QTY and have a data type of INTEGER. The column would
contain two values, the first of which is null and second of which has a numeric value of 550.

If the first value in a column is null it can only be followed by numeric values. The column is
defined as having a data type of INTEGER.

Character values cannot be entered in a column which has been defined as having a data type of
INTEGER. Any rows following the row with the incorrect value are not entered in the table.

A numeric value entered in a column which has been defined as having a data type of
VARCHAR(254) is treated as a character value and is prefixed with zeros. Any rows following
the row with the incorrect value are entered in the table.

Command Variables: Table:

V1(1) value V2(1) value V3(1) value <
V1(2) value V2(2) null V3(2) value <
V1(3) value V2(3) value V3(3) null <

V1 V2 V3
value
value
value

value
null
value

value
value
null

ASG-Manager Products Relational Technology Support: SQL/DS

112

Command Variables can be assigned character values that are a maximum of 255 characters long.
Character values are, if necessary, truncated to 254 characters when entered in a column having a
data type of VARCHAR(254).

If you want to create or insert rows into tables with columns having data types other than
INTEGER or VARCHAR(254) you can use the ISQL command or create an Executive Routine
calling the COMMAND member MPDYDSSSQL.

Importing Information from Columns with Particular Data Types
You can create an Executive Routine which imports information from tables and views into the
Manager Products environment. The values in each column are assigned to Command Variables
as Procedures Language values. Command Variables can be assigned numeric or character values.
Numeric values can have a maximum value of 2,147,483,647 and a minimum value of
-2,147,483,648. Character values can be a maximum of 255 characters long.

Only information that can be assigned to a variable as a character or numeric value can be
imported. For example, the values in columns with data types of GRAPHIC, VARGRAPHIC, or
LONG VARGRAPHIC cannot be imported.

Information cannot be imported from columns with a data type of TIME, TIMESTAMP, or DATE
unless you use the SQL CHAR function to obtain a character representation of the value.

Information cannot be imported from columns with a data type of FLOAT unless you use the SQL
DECIMAL function to obtain a numeric representation of the value.

Values in columns with a data type of VARCHAR or LONG VARCHAR are, if necessary,
truncated to 255 characters.

Values in columns with a data type of FLOAT or DECIMAL are, if necessary, truncated after the
decimal point.

Table 14 Column Data Types and Procedures Language Values

Column Data Type Procedures Language Value

TIME CHARACTER (using the CHAR function)

TIMESTAMP CHARACTER (using the CHAR function)

DATE CHARACTER (using the CHAR function)

GRAPHIC (n) Not supported

VARGRAPHIC (n) Not supported

LONG VARGRAPHIC Not supported

CHAR (n) CHARACTER

VARCHAR (n) CHARACTER

LONG VARCHAR CHARACTER

SMALLINT NUMERIC

7 Dynamic SQL Services

113

The above table shows the type of value which the information in columns is given when assigned
to Manager Products Procedures Language Command Variables.

Variables Used in Dynamic SQL Services

Introduction to the Variables Used in Dynamic SQL Services
Command variables contain the information that is transferred between Manager Products and
your relational environment by the Executive Routines you have created. The variables can be
divided into control variables and return variables.

Control variables are those Command Variables which are specified in Executive Routines. For
example, the SQLI_COMMAND variable with which you specify the SQL statements to be
submitted.

Return variables are those Command Variables which are not specified in Executive Routines but
are generated by Dynamic SQL Services in response to the SQL Statements you have submitted.
For example, the SQLI_CODE(l) variable which contains the SQLCODE number returned from
your relational environment.

Control Variables
The SQLI_COMMAND Command Variable defines the SQL statement you want to submit. You
must specify additional elements of the variable if you need to continue the statement. Statements
defined in the additional elements must commence with a space otherwise the whole statement
will concatenate and be rejected by DB2 or SQL/DS.

If you repeat the SQLI_COMMAND variable in an Executive Routine you must ensure that any
elements specified in an earlier variable are set to null in subsequent variables in which they are
unused. For example, if the first SQL statement you submit uses three elements of the
SQLI_COMMAND variable but the second SQL statement you submit only uses two elements,
you must set the third element to null.

The SQLI_TABLE_SPACE Command Variable defines the name of the DB2 table space or
SQL/DS dbspace in which a table is stored. The dbspace or table space must already exist.

The SQLI_TABLE_NAME Command Variable defines the name of a table. The table name can
be qualified or unqualified. DB2 or SQL/DS adds an implicit qualifier if it is unqualified. The
implicit qualifier will be your logon in the environment in which DB2 or SQL/DS operates. If you
are creating and populating a new table then a table of the same name must not already exist. If
you are inserting rows in an existing table then the table must exist.

INTEGER NUMERIC

FLOAT (n) NUMERIC (using the DECIMAL function)

DECIMAL (n,m) NUMERIC

Table 14 Column Data Types and Procedures Language Values

Column Data Type Procedures Language Value

ASG-Manager Products Relational Technology Support: SQL/DS

114

The SQLI_ROWS Command Variable defines the maximum number of rows to which the
Executive Routine will be applied. For example, the number of rows to be displayed in a result
table or the number of rows to be populated or inserted into a table. The limit will override the
number of rows in the result table or the number of elements in the Command Variables defining
the rows to be populated or inserted.

When creating tables or inserting rows into a table you must specify Command Variables naming
the columns in the table.

When importing information from tables and views you can name Command Variables to which
the imported information will be assigned.

Return Variables
The SQLI_CD_n Command Variable (where n is the number of the column) contains the values
in the columns from which you have imported information. The variable is generated as a default
if you have not named the variables to which the information is to be assigned.

The SQLI_CS Command Variable contains the maximum size of the columns from which you
have imported information. The size is calculated in bytes. The maximum size is either the column
name or the largest value in the column, whichever is greater.

The SQLI_CL Command Variable contains the names of the columns from which you have
imported information.

The SQLI_RETURN Command Variable contains the Manager Products code returned by
Dynamic SQL Services. The return code is the same as the number of the Manager Products
message it generates.

The SQLI_SQLCODE(l) Command Variable contains the SQL/DS or DB2 SQLCODE returned
from your relational environment.

The SQLI_SQLCODE(2) Command Variable contains the variable-names within the SQL/DS
HELP text associated with the returned SQLCODE.

The SQLI_RETURN, SQLI_CODE(l), and SQLI_CODE(2) variables are examined by the
EXECUTIVE member MPDYDSSXIT which you can tailor to generate HELP text to suit your
environment, or perform additional checking.

7 Dynamic SQL Services

115

The COMMAND and EXECUTIVE Members Used in Dynamic SQL Services
The following COMMAND and EXECUTIVE members must be called from the Executive
Routines with which you submit embedded SQL statements to your DB2 or SQL/DS environment:

• MPDYDSSCRT: creating and populating a table

• MPDYDSSINS: inserting rows into a table

• MPDYDSSSEL: importing information and assigning it to Procedures Language
variables

• MPDYDSSSQL: submitting any SQL statement that can be dynamically prepared for
execution

• MPDYDSSXIT: displaying SQLCODES and SQL/DS HELP text

Creating and Populating a Table
You can create an Executive Routine which creates a table and specifies the DB2 table space or
SQL/DS dbspace it is stored in, the names of its columns, the number of rows it contains and the
values within each column.

The Executive Routine must call:

• The COMMAND member MPDYDSSCRT to create and populate the table

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP text
returned from your relational environment

and must contain the Command Variables:

• SQLI_TABLE_NAME

• SQLI_TABLE_SPACE

• Those variables defining the columns in the table

and can optionally contain the Command Variable and directives:

• SQLI_ROWS

• Those directives defining the values in the columns.

The called COMMAND member MPDYDSSCRT must be followed in the Executive Routine by
the names, enclosed in literal delimiters, of the columns you have defined.

By specifying DACCESS and DRETRIEVE commands in the Executive Routine you can
populate the table with information filed in members in the dictionary.

ASG-Manager Products Relational Technology Support: SQL/DS

116

For example, to create a table named SALES stored in a table space or dbspace named
COMPANY and containing the following columns and rows:

enter the following Executive Routine:

MPXX
/* ___
/* An Example of an Executive Routine which creates and
/* populates a table.
/* ___
LITERAL :

/* ___
/* Naming the table and dbspace or table space.
/* ___
COMMAND SQLI_TABLE_NAME
COMMAND SQLI_TABLE_SPACE
SQLI_TABLE_NAME = :SALES:
SQLI_TABLE_SPACE = :COMPANY:
/* ___
/* Specifying the number of rows to be created in the
/* table.
/* ___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/* ___
/* Naming the columns.
/* ___
COMMAND CATALOGUE_NAME
COMMAND QTY
COMMAND AREA
/* ___
/* Populating the columns.
/* ___
DACCESS MEMBER :GROUP-SALES-NS:;
DRETRIEVE ALL ALIAS;
DRETRIEVE ALL CATALOGUE;
QTY(2) = :5500:
AREA() = ALIAS_NAME
/* ___
/* Calling the COMMAND member MPDYDSSCRT.
/* ___
MPDYDSSCRT :AREA: :CATALOGUE_NAME: :QTY: ;
/* ___
/* Calling the EXECUTIVE member MPDYDSSXIT.
/* ___
MPDYDSSXIT;
/* ___
/* Either exit or create and populate another table.

AREA CATALOGUE_NAME QTY

NORTH D35 null

SOUTH D36 5500

7 Dynamic SQL Services

117

/* ___
EXIT

Figure 28 Dynamically Creating and Populating a Table

Refer to "Variables Used in Dynamic SQL Services" on page 113 for details of the variables used
in Dynamic SQL Services.

Inserting Rows into a Table
You can create an Executive Routine which inserts rows into a table.

The Executive Routine must call:

• The COMMAND member MPDYDSSINS to insert rows into the table

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP text
returned from your relational environment

and contain the Command Variables:

• SQLI_TABLE_NAME

• SQLI_TABLE_SPACE

• Those variables and directives specifying the names of the columns and defining the rows to
be inserted

and can optionally contain the Command Variable:

• SQLI_ROWS.

The called COMMAND member MPDYDSSINS must be followed in the Executive Routine by
the names, enclosed in literal delimiters, of the columns in the table into which you are inserting
rows.

By specifying DACCESS and DRETRIEVE commands in the Executive Routine you can insert
information filed in members in the dictionary into the table.

For example, to insert the third and fourth rows into the following table named SALES:

enter the following Executive Routine:

AREA CATALOGUE_NAME QTY

NORTH D35 null

SOUTH D36 5500

EAST null null

WEST D37 null

ASG-Manager Products Relational Technology Support: SQL/DS

118

MPXX
/* ___
/* Example Executive Routine to insert rows into a table.
/* ___
LITERAL :

/* ___
/* Naming the table and table space or dbspace.
/* ___
COMMAND SQLI_TABLE_NAME
COMMAND SQLI_TABLE_SPACE
SQLI_TABLE_NAME = :SALES:
SQLI_TABLE_SPACE = :COMPANY:
/* ___
/* Specifying the number of rows to be inserted.
/* ___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/* ___
/* Specifying the columns names.
/* ___
COMMAND AREA
COMMAND CATALOGUE_NAME
COMMAND QTY
/* ___
/* Defining the rows to be inserted.
/* ___
DACCESS MEMBER :GROUP-SALES-EW:;
DRETRIEVE ALL ALIAS;
DRETRIEVE ALL CATALOGUE;
AREA() = ALIAS_NAME
CATALOGUE_NAME(2) = D37
/* ___
/* Call COMMAND member MPDYDSSINS.
/* ___
MPDYDSSINS :AREA: :CATALOGUE_NAME: :QTY: ;
/* ___
/* Call EXECUTIVE member MPDYDSSXIT.
/* ___
MPDYDSSXIT;
/* ___
/* Either exit or insert rows into another table.
/* ___
EXIT

Figure 29 Dynamically Inserting Rows into a Table

Refer to "Variables Used in Dynamic SQL Services" on page 113 for details of the variables used
in Dynamic SQL Services.

Importing Information and Assigning it to Command Variables
You can create an Executive Routine which imports information from tables and views and
assigns it to Procedures Language Command Variables.

7 Dynamic SQL Services

119

The Executive Routine must call:

• The COMMAND member MPDYDSSSEL to import the information

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP text
returned from your relational environment

and contain the Command Variable:

• SQLI_COMMAND

and can optionally contain the Command Variables:

• SQLI_ROWS

• Those naming the variables to which the imported column values will be assigned.

If you do not name the variables to which column values are to be assigned, they are given the
default name SQLI_CD_n where n is the number of the column.

The called COMMAND member MPDYDSSSEL must be followed in the Executive Routine by
the names of the Command Variables you have named. The names must be in enclosed in literal
delimiters. You do not need to specify the default names if you have not named any variables.

The Executive Routine submits SQL SELECT statements to your relational environment. The
result of the SELECT statement is used to populate Command Variables. Because you can submit
any SELECT statement which conforms to the specifications of a full select statement, you can
import information from several tables and views. For example, you can include in the SELECT
statement, joins from several tables, and views, scalar functions and other operators such as
UNIONs and ORDER BY.

You can manipulate the information assigned to the Command Variables by using the Manager
Products Procedures Language. For example, you can generate result tables in a format which
suits your environment.

For example, to import information about a table named SALES and then display the information
in the following format:

AREA CATALOGUE_NAME QTY

NORTH D35

SOUTH D36 5500

enter the following Executive Routine:

MPXX
/* ___
/* Example Executive Routine for importing information and
/* assigning it to Command Variables.
/* ___
LITERAL :

/* ___

ASG-Manager Products Relational Technology Support: SQL/DS

120

/* Naming the variables to which the information is to be
/* assigned.
/* ___
COMMAND AREA
COMMAND CATALOGUE_NAME
COMMAND QTY
/* ___
/* Specifying the number of rows of information to be
/* imported.
/* ___
COMMAND SQLI_ROWS
SQLI_ROWS = 2
/* ___
/* Specifying the SELECT statement.
/* ___
COMMAND SQLI_COMMAND
SQLI_COMMAND(1) = :SELECT AREA, CATALOGUE_NAME, QTY:
SQLI_COMMAND(2) = :FROM SALES:
/* ___
/* Call COMMAND member MPDYDSSSEL.
/* ___
MPDYDSSSEL :AREA: :CATALOGUE_NAME: :QTY: ;
/* ___
/* Call EXECUTIVE member MPDYDSSXIT and exit.
/* ___
MPDYDSSXIT;
IF SQLI_RETURN = 0 THEN GOTO NOERRORS
EXIT
-NOERRORS
/* ___
/* Manipulate the variables and values to display the
/* result table.
/* ___
SAY LEFT (SQLI_CL(1), SQLI_CS(1)) -
LEFT (SQLI_CL(2), SQLI_CS(2)) -
LEFT (SQLI_CL(3), SLQI_CS(3))

I = 1
-BEGLOOP1
IF I > ARRAYHI (:AREA:) THEN GOTO ENDLOOPI
SAY LEFT (AREA(I), SQLI_CS(1)) -
LEFT (CATALOGUE_NAME(I), SQLI_CS(2)) -
LEFT (QTY(I), SQLI_CS(3))

I = I+I
GOTO BEGLOOP1
-ENDLOOPI
EXIT

Figure 30 Dynamically Importing Information

Refer to "Variables Used in Dynamic SQL Services" on page 113 for details of the variables used
in Dynamic SQL Services.

Submitting any SQL Statement That Can be Prepared
You can create an Executive Routine which submits to your relational environment any SQL
statement that can be dynamically prepared for execution.

7 Dynamic SQL Services

121

The Executive Routine must call:

• The COMMAND member MPDYDSSSQL to submit the SQL statement

• The EXECUTIVE member MPDYDSSXIT to display any SQLCODEs and HELP text
returned from your relational environment

and contain the Command Variable:

• SQLI_COMMAND

and can optionally contain the Command Variable:

• SQLI_ROWS.

Because you do not have to define columns with Command Variables you can submit SQL
statements to tables having columns of any data type. For example, you can insert rows into tables
having columns with data types other than INTEGER or VARCHAR(254).

For example, to add a column named DELIVERY with a data type of DATE to a table named
SALES, enter the following Executive Routine:

MPXX
/* ___
/* Example Executive Routine to generate any SQL statement
/* that can be prepared.
/* ___
LITERAL :

/* ___
/* Specifying the SQL statement.
/* ___
COMMAND SQLI_COMMAND
SQLI_COMMAND(1) = :ALTER TABLE SALES:
SQLI_COMMAND(2) = :ADD DELIVERY DATE:
/* ___
/* Call COMMAND member MPDYDSSSQL.
/* ___
MPDYDSSSQL ;
/* ___
/* Call EXECUTIVE member MPDYDSSXIT.
/* ___
MPDYDSSXIT ;
/* ___
/* Either exit or submit another SQL statement.
/* ___
EXIT

Figure 31 Dynamically Submitting SQL Statements

Refer to "Variables Used in Dynamic SQL Services" on page 113 for details of the variables used
in Dynamic SQL Services.

ASG-Manager Products Relational Technology Support: SQL/DS

122

Creating Your Own HELP Text
DB2 or SQL/DS SQLCODEs are printed in response to any unsuccessful SQL statements you
have submitted to your relational environment. SQL/DS SQLCODEs are followed by explanatory
HELP text. DB2 SQLCODEs are not followed by explanatory HELP text.

By tailoring the EXECUTIVE member MPDYDSSXIT you can specify the HELP text to be
displayed in response to each SQLCODE number and so create your own HELP text to suit your
own environment.

For example if you were to include the following Procedures Language directive in the member
MPDYDSSXIT:

IF SQLI_CODE(1) = -204 THEN SAY SQL_CODE(2) NOT FOUND

then the HELP text, variable-name NOT FOUND, would be displayed in response to the
SQLCODE number -204.

In the above example variable-name is a name DB2 or SQL/DS has returned with the
SQLCODE -204.

You can also make the member MPDYDSSXIT carry out additional checks in response to
particular SQLCODES. For example, by embedding SQL SELECT statements in the member you
could respond to a -204 SQLCODE by carrying out further interrogations of your relational
environment.

The HELP text you have created is not displayed in response to SQL statements submitted with
the ISQL command. You can find out what the predefined SQL/DS HELP text is by entering an
ISQL command including the HELP keyword.

123

8 8Import

Figure 32 An Illustration of How Information is Imported

D
I
C
T
I
O
N

EXTRACT

W
B
T
A

RECONCILE PREVIEW POPULATE

C
A
T
A
L
O
G

A
R
YR

E
P
O
R
T

RADD

RIGN

RREM

RREP

RUPD

MPAID
TRANSLATION
AND NAMING
RULES

LAYOUT
RULES

MEMBER
DEFINITION
STATEMENTS

ASG-Manager Products Relational Technology Support: SQL/DS

124

Introduction to Importing Information about External Objects

Overview of Importing Information
The Corporate Dictionary/Repository Definition Import from SQL/DS facility enables you to
import information about SQL/DS objects from the SQL/DS catalog into the Manager Products
environment.

Use the EXTRACT SQL command to import information. The EXTRACT SQL command passes
SQL statements to SQL/DS which interrogate the catalog. The results of the interrogations are
used to populate the WorkBench Translation Area (WBTA) with Manager Products Procedures
Language Global Variables. The information on the WBTA can be subsequently used by the
RECONCILE, PREVIEW, and POPULATE commands to generate proposed members which
document SQL/DS objects and to enter the members in the dictionary.

To be able to import information with the EXTRACT SQL command you must have SQL/DS on
the same CPU and running under the same operating system as Manager Products.

Access to the information in the catalog is controlled by SQL/DS. The information you can import
is determined by the privileges granted to SQL/DS authorization IDs. Your ASG-ControlManager
Logon Identifier is taken as your authorization ID unless you have specified another authorization
ID in the CREATOR clause of the EXTRACT SQL command.

The members documenting the SQL/DS objects are of the member types provided by the SQL/DS
Definition Facility. For example, information about a table is documented in a SQL-TABLE
member. Imported information about columns and their data type is documented in ITEM
members.

The members are given default names which include a prefix identifying the type of object they
document and, for some types of object, the authorization ID of the owner of the object in
SQL/DS.

The Systems Administrator can tailor the way proposed members are generated from the
information on the WBTA. For example, proposed members can be given names and member
types which suit your dictionary standards.

Importing information about an object will result in information about particular objects directly
related to it also being imported. The proposed members documenting the objects include in their
definitions, clauses which define their relationships to one another.

Manager Products users who have not already documented their SQL/DS environment in the
dictionary can therefore do so in the minimum amount of time. Users who have already
documented their SQL/DS environment in the dictionary can reconcile their existing member
definitions with the objects in SQL/DS so as to ensure that their documentation is both accurate
and complete.

Having documented your SQL/DS environment in the dictionary you can use the tools in the
integrated Manager Products Family of products to analyze, enhance, and maintain that
environment.

8 Import

125

Naming Guidelines When Importing Information
The information imported about objects in your relational environment can be used to generate
proposed members. Different types of object are documented in particular types of member.

Default names are given to the members documenting the external objects. The name of the
member is made up of:

• A prefix identifying the member and object type, and

• For certain types of objects, the authorization ID of the owner of the object in your relational
environment, and

• The name of the object on the catalog

with each part of the member name being separated by a hyphen.

For example, a proposed member documenting a relational table is named TB-owner-name.

The name of the objects as held on the catalog (excluding the authorization ID) is entered in the
ALIAS clause of proposed members. The names of columns as held on the catalog are entered in
the KNOWN-AS clauses of proposed members documenting tables.

Underscores in the names of external objects are converted into hyphens when information is
imported about the object.

You can rename proposed members using the RECONCILE and RREN commands.

You must delimit proposed member names containing characters from the Manager Products
extended character set or you will be unable to enter the member’s definition into the dictionary.
To find out which characters can be used to delimit member names use the QUERY
STRING-DELIMITER command.

If you have already documented your relational environment in the dictionary, you should ensure
that the proposed member’s names comply with your existing naming standards.

You cannot accurately reconcile proposed members documenting external objects with existing
dictionary members if the proposed member’s names do not comply with your naming standards.

Reconciliation is carried out by the RECONCILE command which displays a report comparing
the proposed members with any existing dictionary members which have the same name.

An inaccurate reconciliation can result in objects in your relational environment being
documented in more than one dictionary member and the one to one correspondence between
external objects and dictionary members being lost.

If you have already documented your relational environment in the dictionary you should take into
consideration the following when importing information:

• A column can be documented in a GROUP member but imported information about a
column is always documented in an ITEM member. The ITEM members have their own
default naming prefix and may not be reconciled with any existing GROUP members
documenting the same columns.

ASG-Manager Products Relational Technology Support: SQL/DS

126

When importing information about external objects which were originally created by exporting
from member definitions in the dictionary, you should take into consideration the following:

• An object name generated from the KNOWN-AS or ALIAS clause of a member is not
reconciled with the name of the member whose definition contains the clause

• An object name generated from a member name longer than that allowed in your relational
environment is reduced in length by the Name Reduction Process. The reduced object name
is not reconciled with the full member name.

The Systems Administrator can define alternative naming rules which suit your naming standards,
for example, to create your own naming prefixes. Alternatively the interrogation of the dictionary
carried out during reconciliation can be tailored.

For example if it is your naming standard to generate object names from KNOWN-AS or ALIAS
clauses you could specify WHOSE ALIAS IS or WHICH MEMBERS HAVE KNOWN-AS
EQUALS commands during reconciliation so as to find out if there is an existing dictionary
member documenting an object. This approach is only effective if you have, as a dictionary
standard, entered unique names in all ALIAS or KNOWN-AS clauses.

You could also specify the full name of dictionary members (if they do not exceed thirty
characters) as the labels of external objects. Labels are not reduced in length by the Name
Reduction Process and any hyphens within them are not changed to underscores when SQL
statements are generated from a member’s definition. When importing information about the
objects you could reconcile the object’s label with the member’s name.

Refer to "Deriving SQL/DS Object Names and External Names from Aliases" on page 101 for
details of how to define your own naming rules.

Refer to the Appendix, "The Manager Products Name Reduction Process," on page 279 for details
of the Name Reduction Process.

Refer to the ASG-ControlManager User’s Guide for details of the Manager Products character set.

where name is the name of the object on the SQL/DS catalog and owner is the SQL/DS
authorization ID of the owner of the object.

How Columns Are Documented
Imported information about columns in your relational environment is documented in ITEM
members.

Table 15 Naming Rules for Members Documenting Imported Objects

COLUMN ITEM IT-name

DBSPACE SQL-DBSPACE SD-name

INDEX SQL-INDEX SX-owner-name

OWNER SQL-USER SR-name

TABLE SQL-TABLE ST-owner-name

VIEW SQL-VIEW SV-owner-name

8 Import

127

The data type of a column is documented in the form-description and USAGE clause of the ITEM
member. The ITEM members are given a form-keyword of HELD-AS.

Columns can be documented in GROUP members but imported information about columns is
always documented in ITEM members.

The Systems Administrator can tailor how columns and their data types are documented in the
dictionary.

Refer to "Description of MPDYWTCVDT" on page 130 for details of how to tailor how columns
are documented.

The following table shows how the data type of a column is documented in the form-description
and USAGE clause of ITEM members.

where n is an integer.

A column data type of DECIMAL(n,m) means a total of n digits and m decimal digits. This
converts to a form-description expressed with the number of digits to the left of the decimal point
(n-m) followed by a period, followed by m. For example a column with a data type of
DECIMAL(5,3) is documented in a form-description clause as PACKED-DECIMAL 2.3.

Table 16 Documenting the Data Type of Imported Columns

Column Data Type Form-Description USAGE Clause

TIME CHARACTER 8 TIME

DATE CHARACTER 10 DATE

TIMESTAMP CHARACTER 26 TIMESTAMP

GRAPHIC(n) CHARACTER n GRAPHIC

VARGRAPHIC(n) CHARACTER 1 TO n GRAPHIC

LONG VARGRAPHIC CHARACTER 16383 GRAPHIC

SMALLINT BINARY 4 none

INTEGER BINARY 9 none

FLOAT(n)
n = 1..21

FLOATING-POINT 6 none

FLOAT(n)
n = 22..53

FLOATING-POINT 16 none

DECIMAL(n,m) PACKED-DECIMAL (n-m.m) none

CHARACTER(n) CHARACTER n none

VARCHAR(n) CHARACTER 1 TO n none

LONG VARCHAR CHARACTER 32767 none

ASG-Manager Products Relational Technology Support: SQL/DS

128

Tailoring Import Commands

Introduction to Tailoring Import Commands
We provide predefined facilities for importing information from DB2 and SQL/DS. There are four
stages to the import procedure:

• Extract (using the EXTRACT DB2 and EXTRACT SQL commands)

• Reconcile (using the RECONCILE command)

• Preview (using the PREVIEW IMPORT command)

• Populate (using the POPULATE command).

You can tailor two of these stages (the RECONCILE and PREVIEW IMPORT commands), in
order to customize imported information to suit your own purposes and environment.

The EXTRACT DB2 and EXTRACT SQL commands enable you to extract information from the
DB2 and SQL/DS Catalogs respectively, and place it on the Workbench Translation Area
(WBTA) in the form of Global Variables containing proposed member names and member types.
These commands are provided by the Corporate Dictionary/Repository Definition Import from
DB2 facility, and the Corporate Dictionary/Repository Definition Import from SQL/DS facility
respectively.

You can then reconcile this extracted information against dictionary information, using the
RECONCILE command, and generate member definition statements from it, using the PREVIEW
IMPORT command. These commands are provided by the Transfer and Translation Engine
facility.

Note:
You can tailor some aspects of the extraction process at installation time. Refer to the information
about Manager Products and external environments in your Manager Products installation manual.

You can tailor the RECONCILE command to change the way in which it reconciles extracted
information with information already present in your dictionary.

You can tailor the PREVIEW IMPORT command to generate member definition statements in a
format that suits your environment, for example by omitting the ALIAS clause from member
definitions.

Thus, you can customize the reconciliation procedure and member generation to suit your
installation’s requirements.

Both the RECONCILE and PREVIEW IMPORT commands call a series of Corporate Executive
Routines in the course of execution. In order to tailor either command you must change the
instructions in Corporate Executive Routines.

8 Import

129

The RECONCILE command calls the following Corporate Executive Routines:

• MPDYWTDFLT, to:

— Optionally call MPDYWTMT42

— Set up default names for these Corporate Executive Routines:

• MPDYWTCVDT, to convert SQL column data types

• MPDYWTRDMR, to generate proposed member names and proposed member types from
extracted object information

• MPDYWTOCOD, to convert SQL keyword codes to Manager Products keywords

• MPDYWTEXCC, to extract common clauses from dictionary

• MPDYWTMT42, to establish member type checking for DB2 and SQL/DS members.

You can also arrange for RECONCILE to call your own Executive Routines, by specifying their
names in the USING clause of the RECONCILE command. They will then be executed after
MPDYWTOCOD and before MPDYWTEXCC.

The PREVIEW IMPORT command calls the following Corporate Executive Routines:

• MPDYMMCNTL, to control which Corporate Executive Routine for layout rules is
executed, depending on the proposed member type

• Corporate Executive Routines for DB2 member types

• Corporate Executive Routines for SQL/DS member types

• MPDYMMLOCC, to set up common clauses

• MPDYMMLOIT, to set up ITEM definitions.

If you want to obtain a print of any of the Corporate Executive Routines mentioned above, enter:

MP PRINT EXECUTIVE corporate-executive-name ;

The Corporate Executive Routines are supplied to you as Executive Routine members in the
Manager Products Administration dictionary. They must be constructed onto the MP-AID before
use.

A possible method of tailoring a Corporate Executive Routine, provided you have the User
Defined Commands facility installed, is to copy it to a USER-MEMBER with the same name. You
can then tailor the USER-MEMBER, leaving the master copy intact. The USER-MEMBER will
be called in preference to the Corporate Executive Routine the next time you run the command.

Refer to "Member Type and Command Descriptions" on page 143 for details of the RECONCILE
command and the PREVIEW IMPORT command.

ASG-Manager Products Relational Technology Support: SQL/DS

130

Tailorable Corporate Executive Routines

Corporate Executive Routines for SQL/DS Dictionary Definitions
The Corporate Executive Routine MPDYMMCNTL calls the Corporate Executive Routines listed
below to generate definitions for proposed dictionary members. Each corporate Executive Routine
generates a dictionary definition for a particular member type.

The following table shows each SQL/DS object for which you can generate a dictionary
definition, the Corporate Executive Routine which generates it, and the generated dictionary
member type.

These Corporate Executive Routines all do the following:

• They generate REPLACE or ADD statements, followed by the appropriate data definition
for the proposed member

• They call the Corporate Executive Routine MPDYMMLOCC to set up common clauses for
the proposed member.

Description of MPDYWTDFLT
This Corporate Executive Routine sets up the default initialization Executive Routines which are
called by the RECONCILE command, and the default form of the CONTAINS clause for
DB2-TABLE and DB2-VIEW member definitions.

It also optionally executes the supplied executive MPDYWTMT42 to establish member type
checking during reconciliation for DB2 and SQL/DS.

Description of MPDYWTCVDT
This Corporate Executive Routine converts SQL data types for columns into ITEM form
descriptions. It converts each column data type, setting up a dmr_mem_desc variable according to
default conversion rules which conform to those given in the description of how to document
SQL/DS and DB2 column data types.

Description of MPDYWTRDMR
This Corporate Executive Routine contains the rules for converting SQL/DS and DB2 object
names and types into proposed dictionary member names and member types.

SQL/DS Object Corporate Executive Routine Dictionary Member

column MPDYMMLOIT ITEM

authorization-ID MPDYMMLOUS SQL-USER

table MPDYMM32TB SQL-TABLE

view MPDYMM32VW SQL-VIEW

dbspace MPDYMM32DB SQL-DBSPACE

index MPDYMM32 IN SQL-INDEX

8 Import

131

Description of MPDYWTOCOD
This Corporate Executive Routine converts SQL keyword codes, which represent attributes
specific to the SQL/DS and DB2 objects which can be imported, into dictionary member codes.
For example, 'U', which represents a Unique Index, is converted to 'UNIQUE'.

Description of MPDYWTEXCC
This Corporate Executive Routine extracts common clauses from the dictionary. It is passed 2
parameters:

• &p0: Is the dmr_mem_name array number of the current member being processed.

• &pl: Is the dmr_mem_name array number of the first member in a chain of members with
the same name. This value will be the same as &p0 if the current member is being processed
for the first (or only) time. If the two values differ, then the current member (at &pO) has
already been processed (at &pl) and the common clause variables associated with &pl can
be used for &p0; that is, no more DRETRIEVES are required.

Description of MPDYWTMT42
This Corporate Executive Routine sets up member type checking for DB2 and SQL/DS member
types during the RECONCILE stage.

Description of MPDYMMLOCC
This Corporate Executive Routine sets up the common clauses for proposed dictionary members
generated by the PREVIEW IMPORT command.

Global Variables Used in the Import Commands

Introduction to the Variables Used in the Import Commands
The RECONCILE and PREVIEW IMPORT commands use global variables to manipulate and
store information extracted from the DB2 and SQL/DS Catalogs. The global variables are grouped
according to how they are used, as shown below.

Variables specific to SQL:

• DBSPACE data variables (EXT_DBS_).

Variables for DB2 and SQL/DS:

• Column data variables (EXT_COL_)

• INDEX data variables (EXT_IND_)

• TABLE data variables (EXT_TAB_)

• VIEW data variables (EXT_VIE_ and EXT_B)

• Miscellaneous data variables (EXT_).

ASG-Manager Products Relational Technology Support: SQL/DS

132

Generic variables:

• Generic import variables (EXT_OBJ_)

• Proposed dictionary member variables (DMR_MEM_)

• Variables for existing dictionary members (DMR_DIC_)

• Common clause variables (DMR_DIC_)

• References from existing dictionary members (DMR_REF_).

DBSPACE Data Variables
Variables which have names beginning EXT_DBS refer to extracted DBSPACE data.

The table above lists each available DBSPACE data variable, with one of the following:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

• The source of the extracted value in the SQL/DS Catalog.

Refer to the IBM SQL/DS Reference Manual for the exact meaning and use of the extracted values.

Column Data Variables
Variables which have names beginning EXT_COL refer to column data.

Variable Name Source (SQL/DS)

EXT_DBS_LOCK sysdbspaces.lockmode

EXT_DBS_NHEADER sysdbspaces.nrheader

EXT_DBS_OWNER_PTR pointer to the EXT_OBJ_NAME array for the creator/owner
of the DBSPACE

EXT_DBS_PAGES sysdbspaces.npages

EXT_DBS_PCTFREE sysdbspaces.freepct

EXT_DBS_PCTINDEX sysdbspaces.pctindx

EXT_DBS_STORPOOL sysdbspaces.pool

EXT_DBS_TYPE sysdbspaces.dbspacetype

Variable Name Source (DB2)/Use Source (SQL/DS)

EXT_COL_BIT_DATA syscolumns.foreignkey syscolumns.foreignkey

EXT_COL_COMMENT syscolumns.remarks syscolumns.remarks

EXT_COL_CORREL Identifier designating the correlation name of the table or view
to which the column belongs (VIEWS ONLY).

EXT_COL_CREATOR syscolumns.tbcreator syscolumns.tcreator

EXT_COL_DEFAULT syscolumns.default syscolumns.default

8 Import

133

The table lists each available column data variable, with either:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

or:

• The source of the extracted value in the DB2 Catalog (column 2)

• The source of the extracted value in the SQL/DS Catalog (column 3).

Refer to the IBM DB2 and SQL/DS reference manuals for the exact meaning and use of the
extracted values.

EXT_COL_EXPRESSION If the column consists of an expression referring to one or more
other columns, this variable contains the expression (VIEWS
ONLY).

EXT_COL_FLDPROC syscolumns.fldproc syscolumns.fldproc

EXT_COL_FLDPROC_PTR Pointer to the EXT_OBJ_NAME array, naming the field
procedure for this column.

EXT_COL_GROUPBY Contains 'GROUP-BY' if the column is used in a GROUP BY
clause in a VIEW; otherwise it contains null (VIEWS ONLY).

EXT_COL_LABEL syscolumns.label syscolumns.label

EXT_COL_LENGTH syscolumns.length syscolumns.syslength (= x in
EXT_COL_PRECISION and
EXT_COL_SCALE)

EXT_COL_NAME Contains the name of the column.

EXT_COL_NULLS syscolumns.nulls syscolumns.nulls

EXT_COL_NUMBER syscolumns.colno syscolumns.colno

EXT_COL_PKEY Contains 'PRIMARY-KEY' if the column is a primary key.

EXT_COL_PKEY_SEQ SQL/DS only. The sequence of a column in a key:

ASC = ascending

DSC = descending

EXT_COL_PSEQUENCE syscolumns.keyseq syscolumns.keyseq

EXT_COL_PRECISION syscolumns.(length- scale) (x/256)-(x-((x/256)*256))

EXT_COL_SCALE syscolumns.keyseq (x-((x/256)*256))

EXT_COL_SEQUENCE syskeys.ordering

EXT_COL_TNAME syscolumns.tbname syscolumns.tname

EXT_COL_TYPE syscolumns.coltype syscolumns.coltype

Variable Name Source (DB2)/Use Source (SQL/DS)

ASG-Manager Products Relational Technology Support: SQL/DS

134

INDEX Data Variables
Variables which have names beginning EXT_IND refer to INDEX data.

Variable Name Source (DB2)/Use Source (SQL/DS)

EXT_IND_BUFPOOL sys indexes.bpool

EXT_IND_CLOSE sysindexes.closerule

EXT_IND_CLUSTER sysindexes.clustering

EXT_IND_CNOS sysindexes.colnumbers

EXT_IND_COL_ICREATOR sysindexes.creator

EXT_IND_COL_INAME sysindexes.name

EXT_IND_COLUMN_OCC sysindexes.colcount

EXT_IND_COLUMN_PTR Pointer to the EXT_OBJ_NAME array that names the
columns used in the index.

EXT_IND_COLUMN_SEQ Indicates the sequence in which the column entries are
indexed. It may be ASCENDING or DESCENDING.

EXT_IND_CREATOR sysindexes.creator sysindexes.icreator

EXT_IND_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that names the
creator of the index.

EXT_IND_DSETPASS sysindexes.dsetpass

EXT_IND_ERASE_RULE sysindexes.eraserule

EXT_IND_FREEPAGE sysindexpart.freepage

EXT_IND_PCTFREE sysindexpart.pctfree sysindexes.ipctfree

EXT_IND_PRIQTY sys indexpart.pqty

EXT_IND_SECQTY sysindexpart.secqty

EXT_IND_STORGROUP_PTR Pointer to the EXT_OBJ_NAME array that names the
storage group used for the index.

EXT_IND_STORNAME sysindexpart.storname

EXT_IND_SUBPAGE Contains the number of subpages per page.

EXT_IND_SUBPAGE_SIZE sys indexes.pgsize

EXT_IND_TABLE_PTR Pointer to the EXT_OBJ_NAME array that names the
indexed table.

EXT_IND_TCREATCR sysindexes.tbcreator sysindexes.creator

EXT_IND_TNAME sysindexes.tbname sysindexes.tname

EXT_IND_TYPE sysindexes.uniquerule sysindexes.indextype

EXT_IND_VCATNAME sysindexpart.vcatname

8 Import

135

The table above lists each available INDEX data variable, with either:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

or:

• The source of the extracted value in the DB2 Catalog (column 2)

• The source of the extracted value in the SQL/DS Catalog (column 3).

Refer to the IBM DB2 and SQL/DS reference manuals for the exact meaning and use of the
extracted values.

TABLE Data Variables

Variables which have names beginning EXT_TAB refer to extracted TABLE data.

Variable Name Source (DB2)/Use Source (SQL/DS)

EXT_TAB_AUDIT systables.auditing systables.auditing

EXT_TAB_COL_OCC systables.colcount syscatalog.ncols

EXT_TAB_COL_PTR Pointer to the EXT_OBJ_NAME array. It points to the
start of the columns contained in the table.

EXT_TAB_COMMENT systables.remarks syscatalog.remarks

EXT_TAB_CORREL Identifier that designates the table or view.

EXT_TAB_CREATOR systables.creator syscatalog.creator

EXT_TAB_CREATOR_PTR Pointer to the EXT_OBJ_NAME array that names the
creator of the table.

EXT_TAB_DATABASE 'DB2 V.1' for DB2 Version 1
Release 3, 'DB2 V.2' for DB2
Version 2 Release 2

'SQL/DS V.1' for
SQL/DS Version 2
Release 1, 'SQL/DS V.2'
for SQL/DS Version 2
Release 2

EXT_TAB_EDPROC systables.edproc systables.edproc

EXT_TAB_EDPROC_PTR Pointer to the EXT_OBJ_NAME array for the edit
procedure.

EXT_TAB_FKEY_CCREATOR sysforeignkeys.creator syskeyscols.tcreator

EXT_TAB_FKEY_CNAME sysforeignkeys.colname syskeycols.cname

EXT_TAB_FKEY_CTNAME sysforeignkeys.tbname syskeyscols.tname

EXT_TAB_FKEY_DELRULE sysrels.deleterule syskeys.deleterule

EXT_TAB_FKEY_NAME sysforeignkeys.relname syskeycols.keyname

EXT_TAB_FKEY_OCC systables.parents syscatalog.parents

EXT_TAB_FKEY_PTR Pointer to the EXT_OBJ_NAME array for the first
foreign key.

ASG-Manager Products Relational Technology Support: SQL/DS

136

The table above lists each available TABLE data variable, with either:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

or:

• The source of the extracted value in the DB2 Catalog (column 2)

• The source of the extracted value in the SQL/DS Catalog (column 3).

Refer to the IBM DB2 and SQL/DS reference manuals for the exact meaning and use of the
extracted values.

VIEW Data Variables
Variables which have names beginning EXT_VIE and EXT_B refer to extracted VIEW data.

EXT_TAB_LABEL systables.label syscatalog.tlabel

EXT_TAB_COL_FCOL_PTR Pointer to the EXT_OBJ_NAME array for the foreign
key which corresponds to the primary key.

EXT_TAB_PKEY_PCTFREE Contains the percentage of space in each index page
reserved for later insertion and updates of the primary
key.

EXT_TAB_PKEY_TAB_COL_OCC Contains the number of columns in a foreign key.

EXT_TAB_PKEY_TAB_COL_PTR Contains a pointer to the DMR_MEM_NAME array,
which contains the first column in a foreign key.

EXT_TAB_ROWS systables.card syscatalog.rowcount

EXT_TAB_SPACE systables.tsname syscatalog.dbspacename

EXT_TAB_SPACE_PTR Pointer to the EXT_OBJ_NAME array for the
TBSPACE, or DBSPACE, which the table occupies.

EXT_TAB_TSOWNER systables.tsname sysdbspaces.owner

EXT_TAB_VALPROC systables.valproc

EXT_TAB_VALPROC_PTR Pointer to the EXT_OBJ_NAME array for the validation
procedure.

Variable Name Source (DB2)/Use Source (SQL/DS)

EXT_BCREATOR sysviewdep.bcreator sysusage.bcreator

EXT_BNAME sysviewdep.bname sysusage.bname

EXT_BTYPE sysviewdep.btype sysusage.btype

EXT_VIE_CHECK_OPTION Specifies whether or not the check option was specified in
the CREATE VIEW statement.

EXT_VIE_CNAME Contains the column name in the view.

Variable Name Source (DB2)/Use Source (SQL/DS)

8 Import

137

The table above lists each available VIEW data variable, with either:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

or:

• The source of the extracted value in the DB2 Catalog (column 2)

• The source of the extracted value in the SQL/DS Catalog (column 3).

Refer to the IBM DB2 and SQL/DS reference manuals for the exact meaning and use of the
extracted values.

EXT_VIE_COMMENT Contains information about the view, supplied by a user
via COMMENT command.

EXT_VIE_HAVING OCC Contains the number of array elements which are named
in the HAVING clause of the AS subselect, in the SQL
CREATE VIEW statement.

EXT_VIE_HAVING_PTR Pointer to the EXT_VIE_HAVING array which contains
the HAVING clause.

EXT_VIE_HAVING Array which contains all the extracted HAVING clauses.

EXT_VIE_LABEL The label of the VIEW as given by a LABEL ON
statement.

EXT_VIE_SELECT_TYPE Indicates the type of selection of VIEWs. It may contain
either ALL or DISTINCT.

EXT_VIE_TABLE_OCC Contains the number of TABLEs referred to by this
VIEW.

EXT_VIE_TABLE_PTR Pointer to the TABLE referred to by the VIEW.

EXT_VIE_WHERE_OCC Contains the number of array elements which are named
in the WHERE clause of the AS subselect, in the SQL
CREATE VIEW statement.

EXT_VIE_WHERE_PTR Pointer to the EXT_VIE_WHERE array which contains
the WHERE clause.

EXT_VIE_WHERE Array which contains all the extracted WHERE clauses.

EXT_VIEW_TEXT sysviews.text sysviews.viewtext

Variable Name Source (DB2)/Use Source (SQL/DS)

ASG-Manager Products Relational Technology Support: SQL/DS

138

Generic Import Variables
These variables are generic to the import facility. They are used by the RECONCILE command to
generate proposed member names and types. Examples given are from DB2, but they are also used
for import from SQL/DS.

Variable Name Source (DB2)/Use Source (SQL/DS)

EXT_OBJ_CHAIN Contains information to link a parent and its children. The
variable contains the array number of the first child if the
object is a parent, of the second child if the object is a first
child, and so on. For the last child the value of this variable
will be null.

EXT_OBJ_CHAIN_END For a parent object, this variable contains a pointer to its last
child. It is used to build the EXT_OBJ_CHAIN array without
going through the whole chain.

EXT_OBJ_ID Contains the fully qualified name for a parent object, normally
EXT_OBJ_NAME prefixed by the object’s creator and a full
stop.

EXT_OBJ_NAME One of the following Catalog sources, depending on the object
being extracted

systables.name syscatalog.tname

syscolumns.name syscolumns.cname

sysdatabase.name sysindexes.iname

sysplan.name sysdbspaces.dbspacename

sysdbrm.name

sysstogroup.name

systablespace.name

systablepart.name

sysindexes.name

syskeys.name

EXT OBJ_CCC Contains the total number of parent objects extracted.

EXT OBJ_PARENT POINTER For children this will be the array element number for the
EXT_OBJ_NAME array that names the parent object. For
parents this will be null.

EXT OBJ_TYPE One of the following literal values, depending on the object
being extracted

'TABLE' or 'VIEW' 'TABLE' or 'VIEW'

'COLUMN' 'COLUMN'

'DATABASE' 'INDEX'

'PLAN' 'DBSPACE'

8 Import

139

The table above lists each available generic import variable, with either:

• An explanation of how the variable is used in the Corporate Executive Routines (column 2)

or:

• The source of the extracted value in the DB2 Catalog (column 2)

• The source of the extracted value in the SQL/DS Catalog (column 3)

• The literal value assigned to it by the extract command.

Refer to the IBM DB2 Reference Manual for the exact meaning and use of the extracted values.

Proposed Dictionary Member Variables
Variables with names beginning DMR_MEM refer to proposed dictionary members. These
variables are generated by the RECONCILE command and describe the proposed member names
and types.

'PROGRAM'

'STOGROUP'

'TBSPACE'

'INDEX'

EXT_SOURCE Contains the name of the source database. It can have the
value DB2, SQL/DS, or EXF (for external files).

Variable Name Description

DMR_MEM_NAME Contains the proposed member name for an object, which is
created by the default naming rule (MPDYWTRDMR) and
optionally by a user-supplied naming rule.

DMR_ MEM_TYPE Contains the dictionary data type for the object; for example,
DB2-TABLE or ITEM.

DMR_MEM_FUNC Defines the dictionary update function to be applied to the
object. It may contain REPLACE, ADD, or IGNORE.

DMR_MEM_CHAIN Contains a forward pointer for all proposed members with the
same name. Note that the last member in the chain will point to
the first member.

DMR_MEM_CHAIN_PREV Contains a backward pointer for all proposed members with the
same name. Note that the first member in the chain will point to
the last member.

DMR_MEM_DESC Contains the proposed member’s form description for an ITEM.

DMR_MEM_VERSION Contains the proposed version number for a generated ITEM. If
no versions exist on the dictionary this will be a null.

Variable Name Source (DB2)/Use Source (SQL/DS)

ASG-Manager Products Relational Technology Support: SQL/DS

140

The table above lists each available dictionary member variable, with an explanation of how the
variable is used in the Corporate Executive Routines.

Variables for Existing Dictionary Members
Variables with names beginning DMR_DIC refer to dictionary members. The following variables
are populated when a proposed member already exists on the dictionary.

DMR_MEM_GEN Indicator used by the PREVIEW IMPORT command, indicating
whether or not to generate the definition for the object. It may
contain one of the following:

GEN - generate the definition

NOGEN - do not generate the definition because:

a) The parent of this object has DMR_MEM_FUNC set to
IGNORE, or

b) The definition will be generated via another object in
this array because another parent refers to the same
member.

REF - do not generate the definition because the member is a
REFERENCED OBJECT.

Variable Name Description

DMR_DIC_COND Defines the condition of the member in the dictionary, in the
same format as the CONDITION column seen after a LIST
command; for example, SCE ENC, *SCE DUM, or *NC AUTH
(that is, member is protected and user has no access authority).

DMR_DIC_MATCH Indicates whether a proposed member’s form description
matches a form description for a version of that member in the
dictionary. If there is no match, the indicator is set to zero. If
there is a match, the indicator indicates the character position in
the dictionary form description at which the match begins. For
example, if the dictionary form description contains
 'HELD-AS CHARACTERS 8'

and the proposed form description is
 CHARACTERS 8

DMR_DIC_MATCH will be set to 9, because the match begins
with the word CHARACTERS which starts at character position
9 in the string 'HELD-AS CHARACTERS 8'.

DMR_DIC_TYPE Contains the member type of a member on the dictionary.

Variable Name Description

8 Import

141

The table above lists each available dictionary member variable, with an explanation of how the
variable is used in the Corporate Executive Routines.

Common Clause Variables
Common clause variables will only be set up if you do NOT specify NO-COMMON-CLAUSES
in the RECONCILE command. The number of variables to be set up depends on whether or not a
definition already exists in the dictionary for the proposed member.

If the proposed member is not in the dictionary, only the NOTE clause will be set up. It will
contain the date and a time stamp.

If the proposed member is already in the dictionary:

• The NOTE clause is created, or updated to include a message and latest time stamp

• Other clauses, if they exist in the dictionary member, are set up as indicated below.

DMR_DIC_VER_OCC Contains the number of versions, if the member is held on the
dictionary as an ITEM. It contains 1 if no versions are specified.

DMR_DIC_VER_FORM Contains the full form description for a version of an ITEM held
on the dictionary.

DMR_DIC_VER_PTR Contains a pointer to the DMR_DIC_VER_FORM array, if the
member is held on the dictionary as an ITEM.

Variable Name Description

DMR_DIC_ADM_OCC Contains the number of lines of ADMINISTRATIVE-DATA
held on the dictionary.

DMR_DIC_ADM_TEXT Contains the ADMINISTRATIVE-DATA text for the
member.

DMR_DIC_ADM_PTR Pointer to the DMR_DIC_ADM_TEXT array which that
contains the ADMINISTRATIVE-DATA text for the
member.

DMR_DIC_ALI_OCC Contains the number of ALIASES for the dictionary.

DMR_DIC_ALI_NAME Contains the name of the ALIAS for the member.

DMR_DIC_ALI_TYPE Contains the type of the ALIAS for the member.

DMR_DIC_ALI_PTR Pointer to the DMR_DIC_ALI_NAME array that contains the
first ALIAS for the member.

DMR_DIC_CAT_OCC Contains the number of lines of CATALOG data held on the
dictionary.

DMR_DIC_CAT_TEXT Contains the CATALOG data for the member.

DMR_DIC_CAT_PTR Pointer to the DMR_DIC_CAT_TEXT array that contains the
CATALOG data for the member.

Variable Name Description

ASG-Manager Products Relational Technology Support: SQL/DS

142

The table above lists each available common clause variable, with an explanation of how the
variable is used in the Corporate Executive Routines.

References from Existing Dictionary Members
If a proposed member already exists on the dictionary and the dictionary member refers to other
members, the following DMR_REF variables will be set up.

The table above lists each available reference variable, with an explanation of how the variable is
used in the Corporate Executive Routines.

DMR_DIC_COM_OCC Contains the number of lines of COMMENT data held on the
dictionary.

DMR_DIC_COM_TEXT Contains the COMMENT data for the member.

DMR_DIC_COM_PTR Pointer to the DMR_DIC_COM_TEXT array that contains
the COMMENT data for the member.

DMR_DIC_DES_OCC Contains the number of lines of DESCRIPTION data held on
the dictionary.

DMR_DIC_DES_TEXT Contains the DESCRIPTION data for the member.

DMR_DIC_DES_PTR Pointer to the DMR_DIC_DES_TEXT array that contains the
DESCRIPTION data for the member.

DMR_DIC_NOT_OCC Contains the number of lines of NOTE data held on the
dictionary.

DMR_DIC_NOT_TEXT Contains the NOTE data for the member.

DMR_DIC_NOT_PTR Pointer to the DMR_DIC_NOT_TEXT array that contains the
NOTE data for the member.

Variable Name Description

DMR_REF_OCC Contains the number of members referenced.

DMR_REF_PTR Pointer to DMR_REF_NAME array.

DMR_REF_MEM_NAME Contains the name of a member which is referenced.

DMR_REF_MEM_TYPE Contains the type of the referenced member.

DMR_REF_MEM_VERSION Contains the version number of the referenced member.

DNR_REF_RELATIONSHIP Contains the relationship between the referenced member and
a parent.

Variable Name Description

143

9 9Member Types and Commands

Member Type and Command Descriptions

This section describes the member types and commands provided by Manager Products to support
your SQL/DS environment. The member types and commands are documented in alphabetic order
of member type name and command name.

EXTRACT SQL
Use the EXTRACT SQL command to import information about SQL/DS objects onto the
Manager Products WBTA.

Refer to "Syntax of the EXTRACT Command" on page 147 for the syntax of the EXTRACT
command.

Introduction to the EXTRACT SQL Command
Use the EXTRACT SQL command to import information about SQL/DS objects into the Manager
Products environment.

The EXTRACT SQL command passes SQL statements to SQL/DS which interrogates the
SQL/DS catalog. The result tables returned from these interrogations are used to populate the
WBTA with Procedures Language Global Variables.

You can import information about the following types of object:

• Columns

• Owners

• Dbspaces

• Tables

• Indexes

• Views.

You can select the objects you wish to import information about by their name and owner. You
can also select tables which are stored in specified dbspaces.

Importing information about an object will result in information on particular other objects
directly related to it also being imported.

ASG-Manager Products Relational Technology Support: SQL/DS

144

The imported information can be used to generate dictionary members which document the
SQL/DS objects. The member’s definitions will include clauses documenting the relationships of
the objects to one another.

If the definition of an object refers to another object on which information is not imported, then the
referenced object is added to the dictionary as a dummy member.

Importing Information about SQL/DS Objects
You can import information about a selection of SQL/DS objects into the Manager Products
environment.

To import information about SQL/DS objects, enter:

EXTRACT SQL object-type object-name-selection ;

where:

object-type is one of the keywords DBSPACE, INDEX, TABLE, or VIEW and
identifies the type of object.

object-name-selection is either:

• The name of one or more objects separated by commas, or

• A combination of characters and ? and * symbols (each symbol representing one or a
string of characters) which together match the names of a selection of objects

and identifies the names of the objects.

The object name must be the name (excluding any owner qualifier) of the object as it is known on
the SQL/DS catalog.

If your ASG-ControlManager Logon Identifier is different to the authorization ID of the owner of
the SQL/DS object you can only import information about it if you specify the correct
authorization ID in the CREATOR clause of the EXTRACT SQL command.

You can import information about SQL/DS tables stored in specified dbspaces. This can be useful
when you are selecting tables using the ? and * symbols and want to limit the selection to those
tables stored in particular dbspaces.

To import information about SQL/DS tables stored in particular dbspaces, enter:

EXTRACT SQL TABLE object-name-selection
DBSPACE object-name-selection ;

Importing Information about Objects Owned by any Owner
You can import information about objects owned by any owner by specifying the owner’s
SQL/DS authorization ID.

9 Member Types and Commands

145

To import information about SQL/DS objects owned by particular owners, enter:

EXTRACT SQL object-type object-name-selection
CREATOR owner-selection ;

Refer to Item 2 of this command specification for details of object-type and
object-name-selection.

where owner-selection is either:

• The authorization IDs of one or more owners separated by commas, or

• A combination of characters and ? and * symbols (each symbol representing one or a
string of characters) which together match the authorization IDs of a selection of
owners and identifies the authorization IDs of the owners of the objects.

If you do not specify a CREATOR clause then the owner’s authorization ID is taken to be the
same as your ASG-ControlManager Logon Identifier. You cannot import information about an
object if this differs from the authorization ID of the owner of the object.

Representing a Selection of Object Names and Owner Authorization IDs with ? and * Symbols
With a single EXTRACT command you can import information about all or a selection of objects
owned by any or all owners.

To do so, use the ? and * symbols to match the names of objects and the authorization IDs of the
owners of those objects.

The ? symbol represents any single character. For example, if you specify an object name and an
authorization ID of ???? in an EXTRACT command then all objects with a four character name
owned by any owner with a four character authorization ID are selected.

The * symbol represents any string of zero or more characters. For example, if you specify an
object name and an authorization ID of * in an EXTRACT command then all objects owned by
any owner are selected.

You can combine ? and * symbols together and with other characters. For example an object name
of ?T* represents all object names of any character length that have T as their second character.

You cannot represent object names or owner authorization IDs with ? and * symbols in the same
clause of an EXTRACT command in which you have also specified a list of object names or
authorization IDs separated by commas.

Parent, Children, and Referenced Objects
An object specified in an EXTRACT command is known as a parent object. A parent object can
refer to other objects which are known as its children.

The information imported about a parent object can be used to generate a dictionary member. The
member’s definition will include clauses defining the parent object’s relationship to its children.

ASG-Manager Products Relational Technology Support: SQL/DS

146

The EXTRACT command will also import information about those children that do not have
children of their own. This information can then be used to document the children as members in
the dictionary.

Ownership of the parent object can be documented in the dictionary and is therefore included
among the parent object’s children.

Children that can have children of their own are known as referenced objects. The EXTRACT
command does not import information about referenced objects. Referenced objects are added to
the dictionary as dummy members referenced by the definition of the parent object.

If members with the same name as the proposed members documenting the children and
referenced objects already exist in the dictionary then a relationship is created in the dictionary
between the existing members and the member documenting the parent object.

For example, if you import information about a table you can document the table, and its columns,
and ownership in the dictionary. Tables with which it has referential constraints would be
referenced objects added to the dictionary as dummy members.

The EXTRACT command does not produce any output other than messages naming the parent
objects on which information has been imported. Use the RECONCILE command to generate a
Reconciliation Report listing the proposed members documenting the parent, children, and
referenced objects.

9 Member Types and Commands

147

Information which can be Imported from SQL/DS

Syntax of the EXTRACT Command

Table 17 Information Imported by the EXTRACT SQL Command

EXTRACT Command Objects on which Information is
Imported

Dictionary Member
Type

EXTRACT SQL TABLE A table and: SQL-TABLE

 • Its owner SQL-USER
• The dbspace it is in dummy

SQL-DBSPACE
• Its columns ITEMs
• The tables with which it has

referential constraints.
dummy SQL-TABLES

EXTRACT SQL VIEW A view and: SQL-VIEW
• Its owner SQL-USER
• The columns that make up the

view
dummy ITEMs

• The views upon which the view is
based

dummy SQL-VIEW

• The tables upon which the view is
based.

dummy SQL-TABLE

EXTRACT SQL INDEX An index and: SQL-INDEX
• Its owner SQL-USER
• The table it is indexing dummy SQL-TABLE
• The columns forming the index

key.
dummy ITEMs

EXTRACT SQL DBSPACE A dbspace and: SQL-DBSPACE
• Its owner. SQL-USER

� �� EXTRACT DB2 TABLE clause-1

DATABASE clause-2

INDEX

PLAN

STOGROUP

TBSPACE

VIEW

SQL TABLE clause-1
DBSPACE

INDEX

VIEW

clause-2

ASG-Manager Products Relational Technology Support: SQL/DS

148

where clause-1 is:

where:

object-name-selection is a combination of characters and ? and * symbols (each
symbol representing a single or string of characters) which together match the names of a
selection of external objects

object-name is the name of an external object.

where:

? represents a single character
* represents a string of zero or more characters.

clause-2 is:

where:

object-name-selection is as defined above
object-name is as defined above.

where:

owner-selection is a combination of characters and ? and * symbols (each symbol
representing a single or string of characters) which together match the authorization IDs of a
selection of owners

owner is the authorization ID of an owner.

where:

? is as defined above as defined above
* is as defined above as defined above.

� �

CREATOR owner-selection

owner
.

; �

< , <

� �object-name-selection

object-name
<<<< , <<<<

� �

TBSPACE object-name-selection

DBSPACE object-name
<<<< , <<<<

� �object-name-selection

object-name
<<<< , <<<<

9 Member Types and Commands

149

Note:
The DB2 and TBSPACE keywords are provided by the Corporate Dictionary/Repository
Definition Import from DB2 facility.

The SQL and DBSPACE keywords are provided by the Corporate Dictionary/Repository
Definition Import from SQL/DS facility.

ISQL
Use the ISQL command to dynamically submit to your DB2 or SQL/DS environment, SQL
statements entered in the Command printed in the current buffer, or filed in a USER-MEMBER.

Refer to "Syntax of the ISQL Command" on page 151 for the syntax of the ISQL command.

Submitting SQL Statements
To dynamically submit to your relational environment SQL statements entered in the Command
Area, enter:

ISQL sql-statement ;

where sql-statement is any SQL statement that can be dynamically prepared for execution.
The SQL statement can be a maximum of 255 characters long including leading, embedded and
trailing blanks. SQL SELECT statements must conform to the specifications of a full select
statement.

You can also dynamically submit to your relational environment SQL statements printed in the
current buffer or filed in a USER-MEMBER.

To dynamically submit to your relational environment SQL statements printed in the current
buffer, enter:

ISQL ;

The current buffer can be a Command Mode, Edit, Update, or Lookaside Buffer.

To dynamically submit to your relational environment SQL statements filed in a
USER-MEMBER, enter:

ISQL user-member-name ;

where user-member-name is the name of the USER-MEMBER in which the SQL statements
are filed.

You can dynamically submit to your DB2 or SQL/DS environment SQL statements generated by a
previous Manager Products DB2 or SQL command.

For example, you can generate a CREATE TABLE statement with the DB2 CREATE and SQL
CREATE commands. The CREATE TABLE statement can be either printed or, if you have
specified an ONTO clause in the DB2 or SQL command, filed in a USER-MEMBER.

ASG-Manager Products Relational Technology Support: SQL/DS

150

The ISQL command will attempt to submit the entire contents of the USER-MEMBER or current
buffer except for comment lines. Comment lines preceded by two or more hyphens are displayed
by the DB2 or SQL command and describe the SQL statement generated.

If the output generated by the DB2 or SQL command includes Manager Products messages then
they are also submitted and may cause the SQL statement to be rejected by DB2 or SQL/DS. SQL
statements filed in a USER-MEMBER by an ONTO clause do not include messages. You can also
use the SWITCH MESSAGES command to stop Manager Products messages being displayed in
the current buffer.

Restricting the Size of Result Tables
You can specify the number of rows in a result table to be printed within the Manager Products
environment in response to SQL SELECT statements submitted with the ISQL command.

To restrict the size of result tables, enter:

ISQL n ;

where n is the maximum number of rows to be printed. The first n rows in a result table are
printed.

The size restriction applies to all result tables you generate with the ISQL command for the rest of
the current Manager Products session.

You can change the maximum size of result tables by entering another ISQL command specifying
an alternative number of rows.

The size restriction does not apply to result tables printed by SELECT statements submitted
dynamically to your relational environment from within Executive Routines. You can specify the
number of rows to be printed by an Executive Routine by including an SQLI_ROWS variable in
the Executive Routine.

Refer to "Creating and Populating a Table" on page 115 for details of the SQLI_ROWS variable.

Querying SQL/DS SQLCODEs
You can display within your Manager Products environment SQL/DS HELP text explaining
SQLCODEs.

To display SQL/DS HELP text, enter:

ISQL HELP sql/ds-sqlcode ;

or

ISQL ? sql/ds-sqlcode ;

where sql/ds-sqlcode is an SQL/DS SQLCODE number.

SQL/DS SQLCODEs and HELP text are always displayed in response to unsuccessful SQL
statements submitted to your SQL/DS environment with the ISQL command.

9 Member Types and Commands

151

Refer to "Output Printed by Dynamic SQL Services" on page 108 for details of the output printed
by the ISQL command.

Syntax of the ISQL Command

where:

sql-statement is any SQL statement that can be dynamically prepared for execution.
The SQL statement can be a maximum of 255 characters long including leading, embedded,
and trailing blanks. SQL SELECT statements must conform to the specifications of a full
select statement.

user-member-name is the name of a USER-MEMBER in which an SQL statement is
filed

sql/ds-sqlcode is an SQL/DS SQLCODE number

number is the number of rows in a result table to be printed in response to a SQL SELECT
statement.

POPULATE
Use the POPULATE command to enter in the dictionary the ADD or REPLACE commands and
member definition statements generated from the information on the Workbench Translation Area
documenting external objects.

Refer to "Syntax of the POPULATE Command" on page 152 for the syntax of the POPULATE
command.

Entering Statements into the Dictionary
Use the POPULATE command to enter into the dictionary the ADD or REPLACE command and
member definition statements generated by a previous PREVIEW command. The statements are
those displayed in the current buffer or filed in a USER-MEMBER.

To enter into the dictionary statements displayed in the current buffer, enter:

POPULATE FROM BUFFER ;

The output of the PREVIEW command must be displayed in the current buffer which can be a
Command Mode, Lookaside, or Edit Buffer.

If you want to enter other commands between a PREVIEW and POPULATE command you can
prefix these other commands with BROWSE or LOOKASIDE and then use QUIT or XQUIT, to
return to the output of the PREVIEW command, before entering POPULATE.

sql-statement

user-member-name

number

HELP sql/ds-sqlcode

?

� ISQL

.

; �

ASG-Manager Products Relational Technology Support: SQL/DS

152

To enter in the dictionary statements filed in a USER-MEMBER, enter:

POPULATE FROM user-member-name ;

where user-member-name is the name of the USER-MEMBER in which the command and
member definition statements generated by a previous PREVIEW command have been filed.

You can also enter the command and member definition statements by editing the
USER-MEMBER and entering a RUN command or by entering the name of the USER-MEMBER
in the Command Area.

By prefixing POPULATE with a NOPRINT command you can stop any output being printed.

Refer to the ASG-ControlManager User’s Guide for details of the NOPRINT command.

Specifying that Statements Will Form a Logical Unit of Work
You can specify that the command and member definition statements entered in the dictionary by
the POPULATE command are to be treated as one Logical Unit of Work (LUW).

To specify that all the statements will form one LUW, enter:

POPULATE FROM BUFFER ROLLBACK ;

or

POPULATE FROM USER user-member-name ROLLBACK ;

By using the ROLLBACK keyword you can specify that all the statements will form a LUW
which will either update the dictionary or be rolled back in its entirety, leaving the dictionary
unchanged, if for any reason any of the statements are unsuccessful. In this way you can be sure
that the statements documenting the parent object and all its children either have or have not been
entered in the dictionary.

For example, you can avoid a situation where the definition of the parent object is entered in the
dictionary but the definitions of some of its children are not.

Refer to ASG-Manager Products Procedures Language for details of Logical Units of Work.

Syntax of the POPULATE Command

where wbta-clause is:

where user-member-name is the name of a USER-MEMBER.

wbda-clause

� POPULATE

.

; �wbta-clause �

BUFFER user-member-name

� FROM �BUFFER

ROLLBACK

9 Member Types and Commands

153

wbda-clause is:

where:

string can contain from 1 to 31 alphanumeric characters and must conform to the
Manager Products rules for forming valid dictionary member names

If a supplementary USERVIEW member is required for an ENTITY being defined,
string is concatenated, either as a prefix or a suffix, with the name of the ENTITY thus
producing the name of the supplementary USERVIEW. If the resulting userview name
contains more than 32 characters, it is truncated appropriately.

viewset-name can contain from 1 to 32 alphanumeric characters and must conform to
the Manager Products rules for forming valid dictionary names

name-list is a list of names, separated by commas, of relations or records, depending,
respectively, on whether USERVIEWS or ENTITIES has been specified in the command

range-list is a list of numeric ranges, separated by commas,

where m and n are numbers assigned in the Workbench Design Area to relations or records,
depending respectively, on whether USERVIEWS or ENTITIES has been specified in the
command. If present, n must be greater than m.

format-name is the name of a FORMAT member of the Modeling Dictionary. FORMAT
members can be used only if the User Formatted Output facility is installed.

Note:
The wbda-clause is provided by ASG-DesignManager.

The wbta-clause is provided by the ASG-DictionaryManager Translation and Transfer Engine
facility.

PREVIEW
Use the PREVIEW command to generate ADD or REPLACE command statements and
corresponding and member definition statements from the information on the Workbench
Translation Area documenting external objects.

PREFIX-USERVIEWS

SUFFIX-USERVIEWS

� ENTITIES �

string

USERVIEWS

AS-MODEL viewset-name
ALL

NAMES name-list
NUMBERS range-list

� �

ALPHABETICALLY USING FORMAT format-name
��

TO n
m ��

ASG-Manager Products Relational Technology Support: SQL/DS

154

Refer to "Syntax of the PREVIEW Command" on page 155 for the syntax of the PREVIEW
command.

Generating Command and Member Definition Statements
The PREVIEW command uses the information on the WorkBench Translation Area (WBTA) as it
has been processed by previous RECONCILE, RADD, RIGN, RREN, RREP, or RUPD
commands to generate ADD or REPLACE command and member definition statements.

To generate the command and member definition statements, enter:

PREVIEW IMPORT ;

The member definition statements are generated in the default layouts provided by Manager
Products for each member type. You can create layout rules that suit your dictionary standards and
invoke them in the USING clause of the PREVIEW command.

The member definition statements include a NOTE clause giving the time and date the statement
was generated by the PREVIEW command and an ALIAS clause giving the name of the external
object the definition is documenting.

If the definition is to replace an existing member then certain common clauses of the existing
member are incorporated in the definition unless you have specified the
NO-COMMON-CLAUSES keyword in a previous RECONCILE command.

PREVIEW processes members on the WBTA in the same order as they are listed on the
Reconciliation Report generated by the previous RECONCILE command. A proposed member
can appear more than once in a Reconciliation Report but the PREVIEW command only generates
one command and member definition statement for each member.

For example, you could import information about two tables which share a column of the same
name. The shared column would appear twice on the Reconciliation Report but only one
command and member definition statement would be generated to document it in the dictionary.

A member whose definition is not generated, because:

• It has been ignored by a previous RECONCILE command

• It has already been generated in the current PREVIEW output

is indicated by comments. These comments help you to relate the PREVIEW output with the
previous Reconciliation Report.

The generated statements can be:

• Printed,

• Filed in a USER-MEMBER on the MP-AID

• Both printed and filed.

To file the generated statements in a USER-MEMBER you must specify an ONTO clause in the
PREVIEW command.

9 Member Types and Commands

155

By filing the command and member definition statements in a USER-MEMBER you can:

• Hold them across Manager Products sessions

• Edit the generated statements in the Edit Buffer.

You can subsequently enter the statements in the dictionary using the POPULATE command.

Refer to "RECONCILE" on page 157 for further details of the common clauses generated in
member definition statements.

Generating Member Definition Statements in Your Own Layouts
You can tailor the PREVIEW command so that it generates member definition statements in
layouts which suit your dictionary standards.

To generate member definition statements in your own layouts, enter:

PREVIEW IMPORT USING layout-executive ;

where layout-executive is an Executive Routine which invokes other Executive Routines
which each determine the layout of member definition statements generated for a particular
member type.

Alternatively you can tailor the Executive Routines in Manager Products’ default layout rules.

Refer to "PREVIEW" on page 153 for further details of tailoring the PREVIEW command.

Filing Generated Output in a USER-MEMBER

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO,
PRIVATE, PUBLIC, NEW, APPEND, REPLACE, PRINT, and NOPRINT keywords.

Syntax of the PREVIEW Command

where wbta-clause is:

where layout-executive is the name of an Executive Routine.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

wbda-clause

� PREVIEW

.

; �wbta-clause �

USING layout-executive

� IMPORT �

destination

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

ASG-Manager Products Relational Technology Support: SQL/DS

156

wbda-clause is:

where:

string can contain from 1 to 31 alphanumeric characters and must conform to the
Manager Products rules for forming valid dictionary member names

If a supplementary USERVIEW member is required for an ENTITY being defined,
string is concatenated, either as a prefix or a suffix, with the name of the ENTITY thus
producing the name of the supplementary USERVIEW. If the resulting userview name
contains more than 32 characters, it is truncated appropriately.

viewset-name can contain from 1 to 32 alphanumeric characters and must conform to
the Manager Products rules for forming valid dictionary names

name-list is a list of names, separated by commas, of relations or records, depending,
respectively, on whether USERVIEWS or ENTITIES has been specified in the command

range-list is a list of, numeric ranges, separated by commas, each of the form:

where m and n are numbers assigned in the Workbench Design Area to relations or records,
depending respectively, on whether USERVIEWS or ENTITIES has been specified in the
command. If present, n must be greater than m.

format-name is the name of a FORMAT member of the Modeling Dictionary. FORMAT
members can be used only if the User Formatted Output facility is installed.

Note:
The wbda-clause is provided by ASG-DesignManager.

The wbta-clause is provided by the ASG-DictionaryManager Translation and Transfer Engine
facility.

RADD
Use the RADD Line and Primary Commands to specify that you want a proposed member
documenting an external object to be added to the dictionary.

PREFIX-USERVIEWS

SUFFIX-USERVIEWS

� ENTITIES �

string

USERVIEWS

AS-MODEL viewset-name
ALL

NAMES name-list
NUMBERS range-list

� �

ALPHABETICALLY USING FORMAT format-name
��

TO n
m ��

9 Member Types and Commands

157

Use
To use the RADD Line Command, enter:

RADD

in the Line Command Area alongside the proposed member’s identification number in the
Reconciliation Report.

To use the RADD Primary Command, enter:

RADD n ;

in the Command Area.

where n is the proposed member’s identification number in the Reconciliation Report.

The Reconciliation Report is displayed by the RECONCILE command. To display the changes
you have made with the RADD command enter a further RECONCILE command.

The effects of the two forms of the RADD command are the same but you can only enter Line
Commands when working in an interactive environment. You can enter several RADD Line
Commands at the same time.

If a member with the same name as a proposed member already exists in the dictionary and you
specify RADD, it will be taken to mean replace.

You can also specify that you want a proposed member to be added to the dictionary by including
an ADDING clause in the RECONCILE command.

Refer to "RECONCILE" on page 157 for further details of adding proposed members to the
dictionary.

Syntax of the RADD Command

Syntax of the RADD Primary Command

where n is a proposed member’s identification number in a Reconciliation Report.

RECONCILE
Use the RECONCILE command to generate proposed members from the information about
external objects held on the WorkBench Translation Area and reconcile the proposed members
with the current contents of the dictionary.

Refer to "Syntax of the RECONCILE Command" on page 168 for the syntax of the RECONCILE
command.

� �� RADD

�

�� RADD n

.

; �

�

ASG-Manager Products Relational Technology Support: SQL/DS

158

Introduction to the RECONCILE Command
The RECONCILE command uses translation rules to generate proposed members from the
information about external objects placed on the Workbench Translation Area (WBTA) by the
EXTRACT command.

You can override the translation rules by specifying an ADDING, IGNORING,
NO-COMMON-CLAUSES, RENAMING, or REPLACING clause in a RECONCILE command.

You can also tailor the Manager Products default translation rules or create your own translation
rules and invoke them in the USING clause of a RECONCILE command.

A member name and member type are generated for the proposed members. A form-description
and (depending on the data type of the column it is documenting) a USAGE clause are generated
for proposed members which have an ITEM member type.

The RECONCILE command does not update the dictionary but specifies the updates you intend to
make. These updates are determined by the current contents of the dictionary. A proposed member
is added to the dictionary unless a member (other than a dummy member without a source record)
of the same name already exists.

Existing ITEM members are replaced by proposed members whose definitions contain additional
form descriptions. The form descriptions of the existing member are included in the definition of
the proposed member.

In all other cases, if a proposed member has the same name as an existing member, it is ignored.

The RECONCILE command can be entered any number of times. Any Manager Products
instruction other than LOGOFF or RELEASE GLOBAL can be entered between RECONCILE
commands. If you specify an EXTRACT command between RECONCILE commands then the
information on the WBTA is replaced and subsequent RECONCILE commands will apply to the
latest and not the previously imported information.

The first RECONCILE command generates the proposed members. Subsequent RECONCILE
commands can both change the proposed members and, subject to member type checks, specify
whether or not they are to be entered in the dictionary. You can also regenerate the proposed
members by entering a RECONCILE command including an INITIALIZE keyword. The
proposed members are regenerated according to the translation rules and any changes you have
made to the proposed members previously generated are abandoned.

A Reconciliation Report is displayed by each RECONCILE command. The report compares the
proposed members with existing dictionary members which have the same name.

You can use the Reconciliation Report to reconcile the proposed and existing dictionary members
with one another. You can also use the RADD, RIGN, RREN, RREP, and RUPD commands
during reconciliation.

The Reconciliation Report displays the condition of the existing members at the time the proposed
members were generated or regenerated. Reconciliation Reports displayed in response to
subsequent RECONCILE commands not including an INITIALIZE keyword will display any
changes you have made to the proposed members but will not display any changes in the condition
of the existing members.

9 Member Types and Commands

159

The Systems Administrator can define member type checks that specify the types of existing
members to which all the proposed members documenting a parent object and its children can
refer. A check can fail, partially fail, or pass.

If the check fails, the proposed member and all other members in the parent-children set cannot be
added to the dictionary. This condition is indicated by an error message in the Reconciliation
Report and you cannot override it with an RADD, RECONCILE ADDING, RREP, or
RECONCILE REPLACING command.

If the check partially fails, the proposed member can be added to the dictionary but a warning
message in the Reconciliation Report indicates the partial failure.

If the check passes, then the proposed members can be added to the dictionary as normal.

For example, your Systems Administrator could specify that columns in tables should preferably
be documented in ITEM members but can be documented in GROUPs. This check will fail if an
existing SYSTEM member has the same name as a proposed member documenting a column but
will only partially fail if the existing member is a GROUP.

Member type checking enables you to take early action to ensure that proposed members will not
fail to encode, due to a reference to an existing member with an invalid member type, when the
dictionary is populated.

When a member type check failure occurs, you can rename the offending proposed member to a
name that does not exist in the dictionary or to an existing member name that does not cause a
further check failure. A RECONCILE RENAMING command rechecks all the proposed members
in the parent-children set.

If the Basic or Advanced Status facilities are installed the updates to be made to the dictionary are
determined by the contents of the current or next visible status. The Reconciliation Report displays
the condition of the existing members in the current or next visible status. If you change statuses,
the report will continue to display the members as they are visible from the previous status unless
you regenerate the proposed members by specifying an INITIALIZE keyword.

Regenerating Proposed Members
You can regenerate the proposed members documenting external objects.

To regenerate the proposed members, enter:

RECONCILE INITIALIZE ;

The proposed members are regenerated according to the default translation rules. Any changes
you have made to the previously generated members (for example renaming them) are abandoned.
The Reconciliation Report will display the current condition of any dictionary member whose
name is the same as a proposed member.

Tailoring How Proposed Members are Generated
You can tailor the RECONCILE command so that it generates proposed members which suit your
dictionary standards.

ASG-Manager Products Relational Technology Support: SQL/DS

160

To generate proposed members suiting your standards, enter:

RECONCILE INITIALIZE USING translation-rule-name-list ;

where translation-rule-name-list is a list of one or more Executive Routines each
separated by a comma. The Executive Routines must be listed in the order they are to be executed.

For example, if Manager Products’ default naming rules for proposed members do not suit your
dictionary standards you can create Executive Routines specifying alternative rules. Alternatively
you can tailor the Executive Routines in the Manager Products default translation rules.

Refer to "RECONCILE" on page 157 for further details of tailoring the RECONCILE command.

Stopping Proposed Members being Entered in the Dictionary
You can ignore a selection of proposed members so that they are not subsequently entered into the
dictionary.

To ignore proposed members, enter:

RECONCILE IGNORING selection ;

where selection specifies which of the proposed members are to be ignored.

Refer to "Selecting Proposed Members to be Ignored, Added, or Replaced" on page 162 of this
command specification for details of selection.

The Reconciliation Report will indicate that a proposed member is to be ignored.

You can also use the RIGN command to ignore proposed members.

You cannot ignore proposed members documenting referenced objects. Referenced
objects are added to the dictionary as dummy members by a reference from the member
documenting the parent object.

Adding Proposed Members
You can specify that you want a selection of proposed members to be added to the dictionary.

To add proposed members, enter:

RECONCILE ADDING selection ;

where selection specifies which of the proposed members you want to be added to the
dictionary.

Refer to "Selecting Proposed Members to be Ignored, Added, or Replaced" on page 162 of this
command specification for details of selection.

Existing members with the same name as proposed members will be replaced as a result of a
RECONCILE ADDING command.

9 Member Types and Commands

161

You can also specify that a proposed member will replace an existing member by entering a
RECONCILE REPLACING or RREP command.

You can rename proposed members by entering a RECONCILE RENAMING or RREN
command.

If member type checking has been enabled by your Systems Administrator and you want to
replace an existing member with a proposed member, then the member type of the existing
member is checked against a set of allowed proposed member types. If the check fails, the
command will not be executed.

The Reconciliation Report will indicate that the proposed members will be added to the dictionary
as a new member or replace an existing member.

You can also use the RADD command to specify which proposed members are to be added to the
dictionary.

You cannot specify that proposed members documenting referenced objects are to be added to the
dictionary. Referenced objects are added to the dictionary as dummy members by a reference from
the member documenting the parent object.

Replacing Existing Members with Proposed Members
You can specify that you want a selection of proposed members to replace existing dictionary
members.

To replace existing members, enter:

RECONCILE REPLACING selection ;

where selection specifies which proposed members are to replace existing members.

Refer to "Selecting Proposed Members to be Ignored, Added, or Replaced" on page 162 of this
command specification for details of selection.

The Reconciliation Report will indicate which of the proposed members are to replace existing
dictionary members.

You can also use the RREP command to specify which proposed members are to replace existing
members.

If member type checking is enabled by your Systems Administrator, then the member type of the
existing member being replaced is checked against a set of allowed proposed member types. If the
check fails, the command is not executed.

You cannot specify that proposed members documenting referenced objects are to replace existing
dictionary members. A relationship is created in the dictionary between the proposed member
documenting the parent object and the existing member.

Renaming Proposed Members
You can rename a selection of proposed members.

ASG-Manager Products Relational Technology Support: SQL/DS

162

To rename proposed members, enter:

RECONCILE RENAMING MEMBER member-name-l AS member-name-2

or

RECONCILE RENAMING NUMBER n AS member-name-2

where:

member-name-l is the current name of the proposed member and

member-name-2 is the new name

n is the proposed member’s identification number in the Reconciliation Report.

You can rename as many proposed members as you want with a single RECONCILE command by
repeating the MEMBER and NUMBER clauses. The Reconciliation Report will display the new
member names of the proposed members.

If a proposed member appears more than once in the same Reconciliation Report then a
RECONCILE command including a MEMBER clause will rename all occurrences of the
proposed members in the report.

If member-name-2 is the same as the name of:

• Another proposed member in the Reconciliation Report, then the command will be rejected

• An existing member, then the existing member is displayed in the Reconciliation Detailed
Report.

If you rename children then the proposed member documenting the parent object will refer to the
children by their new names.

You may want to rename a proposed member if:

• It has the same name as an existing member

• Its name does not suit your naming standards

• It has failed or partially failed member type checking.

You can create your own naming rules and invoke them in the USING clause of a RECONCILE
command or tailor the Executive Routines in the Manager Products supplied naming rules. You
can also use the RREN command to rename proposed members.

Selecting Proposed Members to be Ignored, Added, or Replaced
You can select which proposed members you want to be ignored, added to the dictionary, or
replace existing dictionary members.

To select proposed members by their member type, enter:

RECONCILE update TYPE member-type-list ;

9 Member Types and Commands

163

where:

update is IGNORING, REPLACING, or ADDING

member-type-list is a list of member types each separated by a comma.

To select proposed members by their member name, enter:

RECONCILE update MEMBER member-name-list ;

where member-name-list is a list of member names each separated by a comma.

To select proposed members by their identification number in the Reconciliation Report, enter:

RECONCILE update NUMBER id-number-list ;

where id-number-list is a list of identification numbers each separated by a comma.

To select all proposed members, enter:

RECONCILE update GROUP ALL ;

To select those proposed members which have the same name as an existing dictionary member,
enter:

RECONCILE update GROUP DUPLICATES ;

The different updates and selections can be combined in a single RECONCILE command. For
example, the following command:

RECONCILE REPLACING GROUP DUPLICATES IGNORING TYPE MODULE
MEMBER IT-DEPT-NAME ;

specifies that:

• Proposed members will replace existing dictionary members which have the same member
name

and

• Proposed members with a member type of MODULE and the proposed member with the
member name IT-DEPT-NAME will not be entered in the dictionary.

Excluding Common Clauses from the Definition of Proposed Members
You can stop the common clauses of existing dictionary members being incorporated in the
definitions of proposed members which are replacing them.

To exclude common clauses, enter:

RECONCILE NO-COMMON-CLAUSES ;

ASG-Manager Products Relational Technology Support: SQL/DS

164

You can specify with a RECONCILE REPLACING or RREP command that a proposed member
is to replace an existing dictionary member.

If you do not enter a RECONCILE command including the NO-COMMON-CLAUSES keyword
then the ADMINISTRATIVE-DATA, ALIAS, COMMENT, DESCRIPTION, and NOTE
common clauses of the existing dictionary member are incorporated in the definition of the
proposed member replacing it.

Proposed members always have a NOTE and an ALIAS clause. The clauses are displayed in the
member definition statements generated for the proposed members by a subsequent PREVIEW
command.

The NOTE clause contains the date and time that the member definition statement was generated
by the PREVIEW command. The ALIAS clause contains the external object’s name. The alias
type will correspond to the language used in the external environment from which information
about the object was imported.

Information in the NOTE and ALIAS clauses of the existing member is incorporated in those of
the proposed member. The single ALIAS clause generated could contain different aliases of the
same alias type. You must edit the member definition statement generated by the PREVIEW
command and change one of the aliases.

If the common clauses of the existing member are updated after the proposed members were last
generated by the RECONCILE command then the updates are not reflected in the member
definition statements generated by the PREVIEW command.

Specifying the Type of Reconciliation Report You Want Displayed
You can specify the type of Reconciliation Report you want to be displayed by a RECONCILE
command.

To display a summarized Reconciliation Report, enter:

RECONCILE LIST SUMMARY ;

To display a detailed Reconciliation Report, enter:

RECONCILE LIST DETAILS ;

To display both a detailed and a summarized Reconciliation Report, enter:

RECONCILE LIST BOTH ;

The summarized report is displayed if you do not request a particular type of Reconciliation
Report.

To display a detailed Reconciliation Report excluding certain information about the relationships
between objects, enter:

RECONCILE LIST DETAILS NO-XREF ;

9 Member Types and Commands

165

If you specify the X-REF keyword then:

• The table listing the children of the parent object and

• The Also referred to by entry which indicates that children are shared by more than one of
the parent objects on which information has been imported

are not displayed in the detailed Reconciliation Report.

A Description of the Reconciliation Summary Report
The Reconciliation Summary Report lists the proposed members documenting the external objects
about which information has been imported.

The ID column contains the unique identification number of the proposed members. The
identification number specifies the order in which information about each object was imported.
This order is determined by the object’s type. The numbering in the report is not in sequence if
there is more than one parent object because information on several objects of the same type is
imported. Parent objects have the lowest identification numbers and are followed in the report by
their children.

The Proposed Member Name column contains the name of the proposed members.

The Type column contains the member type of the proposed members.

The Upd column specifies how the dictionary is to be updated with the proposed members. If
ADD is specified, the proposed member is to be added to the dictionary. If REP is specified the
proposed member is to replace an existing member in the dictionary. If IGN is specified the
proposed member is not to be entered in the dictionary. A * symbol indicates that the proposed
member is a referenced object and is added to the dictionary as a dummy member by a reference
from the member documenting the parent object.

Initially:

• IGN is specified if there is an existing member with the same name as the proposed member

• REP is specified if the proposed member is an ITEM member with a form description not
included in the existing member

• ADD is specified if there is no existing member.

The Condition column indicates whether there is an existing dictionary member with the same
name as the proposed member and if it is a dummy, encoded, unverified, or protected member. If
the column is blank no member of the same name exists. The entry *NO AUTH is displayed if the
Audit and Security facility is installed and you do not have the authority to access the existing
member. The entries in the Condition column are otherwise the same as those displayed in the
Condition column of LIST command output.

If the Systems Administrator has enabled member type checking and a proposed member fails the
check, the error message DM05784E is displayed. If a proposed member partially fails the check,
the warning message DM05784W is displayed.

ASG-Manager Products Relational Technology Support: SQL/DS

166

An Example of the Reconciliation Summary Report
The following is an example of a Reconciliation Summary Report:

* *
* Reconciliation summary report *
* for extract of table AAW.SALES from SQL/DS. *
* *

ID Proposed Member name Type Upd Condition

1 TB-AAW-SALES SQL-TABLE ADD
2 US-AAW SQL-USER IGN SCE-ENC
3 DBS-NORTH SQL-DBSPACE *
4 IT-QTY ITEM ADD * DUM
5 IT-DESCRIPTION ITEM IGN SCE-ENC
6 IT-DELIVERY ITEM ADD
7 IT-PRICE ITEM REP SCE-ENC

9 Member Types and Commands

167

An Example of the Reconciliation Detailed Report
The following is an example of a Reconciliation Detailed Report:

* *
* Reconciliation summary report *
* for extract of table AAW.SALES from SQL/DS. *
* *

1 Extracted...SALES TABLE
Proposed...TB-AAW-SALES SQL-TABLE ADD

--
-------------6 CHILDREN extracted with AAW.SALES------------
--

1 CREATOR
1 DBSPACE
4 COLUMNS

--
2 Extracted... AAW CREATOR

Proposed... US-AAW SQL-USER IGN
Dictionary... SCE ENC SQL-USER

--
3 Refers to... NORTH DBSPACE

Proposed... DBS-NORTH SQL-DBSPACE *
--
4 Extracted... QTY COLUMN

Proposed... IT-QTY ITEM ADD
Dictionary... * DUM ITEM

--
5 Extracted... DESCRIPTION COLUMN

Proposed... IT-DESCRIPTION ITEM IGN
Form desc... CHARACTERS 5 VERSION 1

Dictionary... SCE ENC ITEM
Version 1... HELD-AS CHARACTERS 5
Version 2... ENTERED-AS CHARACTERS 4

--
6 Extracted... COST COLUMN

Proposed... IT-DELIVERY ITEM ADD
Form desc... CHARACTERS 10 USAGE DATE VERSION 1

--
7 Extracted... PRICE COLUMN

Proposed... IT-PRICE ITEM REP
Form desc... NUMERIC 6 VERSION 3

Dictionary... SCE ENC ITEM
Version 1... HELD-AS CHARACTERS 5
Version 2... ENTERED-AS CHARACTERS 4

* *

ASG-Manager Products Relational Technology Support: SQL/DS

168

Syntax of the RECONCILE Command

where initialize-clause is:

where translation-rule-name is the name of an Executive Routine.

selection is:

where:

member-type is the member type of a proposed member

member-name is the name of a proposed member

n is a proposed member’s identification number in a Reconciliation Report.

RIGN
Use the RIGN Line or Primary Command to specify that you do not want a proposed member
documenting an external object to be entered in the dictionary.

Use
To use the RIGN Line Command, enter:

RIGN

in the Line Command Area alongside the proposed member’s identification number in the
Reconciliation Report.

To use the RIGN Primary Command, enter:

RIGN n ;

initialize-clause
� RECONCILE �

� �

IGNORING selection
<<<<<<

NO-COMMON-CLAUSES

� �

ADDING selection
<<<<<<

REPLACING selection
<<<<<<

� �

RENAMING NUMBER n
MEMBER member-name

AS member-name-2
<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<<<<<

LIST SUMMARY

DETAILS

� �

BOTH

.

;

USING translation-rule-name

� INITIALIZE �<<<<<<<< , <<<<<<<<<<<

TYPE member-type GROUP ALL

DUPLICATES

�
<<<<< , <<<<<

�

MEMBER member-name NUMBER n

�
<<<<< , <<<<<

�< , <

9 Member Types and Commands

169

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

The effects of the two forms of the RIGN command are the same but you can only enter Line
Commands when working in an interactive environment. You can enter several RIGN Line
Commands at the same time.

The Reconciliation Report is displayed by the RECONCILE command. To display the changes
you have made with the RIGN command enter a further RECONCILE command.

You can also specify that you want a proposed member to be ignored by including an IGNORING
clause in the RECONCILE command.

Refer to"RECONCILE" on page 157 for further details of ignoring proposed members.

Syntax of the RIGN Line Command

Syntax of the RIGN Primary Command:

where n is a proposed member’s identification number in a Reconciliation Report.

RREN
Use the RREN Line or Primary Command to rename a proposed member documenting an external
object.

Use
To use the RREN Line Command, enter:

RREN

in the Line Command Area alongside the proposed member’s identification number in the
Reconciliation Report.

To use the RREN Primary Command, enter:

RREN n ;

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

� �� RIGN

�

�� RIGN n

.

; �

�

ASG-Manager Products Relational Technology Support: SQL/DS

170

The effects of the two forms of the RREN command are the same but you can only enter Line
Commands when working in an interactive environment. You can enter several RREN Line
Commands at the same time.

A Dialog Buffer in which you specify the new name of the proposed member is displayed in
response to each RREN command.

The Reconciliation Report is displayed by the RECONCILE command. To display the changes
you have made with the RREN command enter a further RECONCILE command. You can also
rename a proposed member by including a RENAMING clause in a RECONCILE command.

Refer to "RECONCILE" on page 157 for further details of renaming proposed members.

Syntax of the RREN Line Command

Syntax of the RREN Primary Command:

where n is a proposed member’s identification number in a Reconciliation Report.

RREP
Use the RREP Line or Primary Command to specify that you want a proposed member
documenting an external object to replace an existing dictionary member.

Use
To use the RREP Line Command, enter:

RREP

in the Line Command Area alongside the proposed member’s identification number in the
Reconciliation Report.

To use the RREP Primary Command, enter:

RREP n ;

in the Command Area.

where n is an integer identifying the proposed member’s identification number in the
Reconciliation Report.

The effects of the two forms of the RREP command are the same but you can only enter Line
Commands when working in an interactive environment. You can enter several RREP Line
Commands at the same time.

The Reconciliation Report is displayed by the RECONCILE command. To display the changes
you have made with the RREP command enter a further RECONCILE command.

� �� RREN

�

�� RREN n

.

; �

�

9 Member Types and Commands

171

You can also specify that you want a proposed member to replace an existing dictionary member
by including a REPLACING clause in the RECONCILE command.

Refer to"RECONCILE" on page 157 for further details of replacing existing members with
proposed members.

Syntax of the RREP Line Command

Syntax of the RREP Primary Command:

where n is a proposed member’s identification number in a Reconciliation Report.

RUPD
Use the RUPD Line or Primary Command to update an existing dictionary member from a
Reconciliation Report in order to interactively change its source record.

Use
To use the RUPD Line Command, enter:

RUPD

in the Line Command Area alongside the identification number in the Reconciliation Report of the
proposed member with the same name as the existing member.

To use the RUPD Primary Command, enter:

RUPD n ;

in the Command Area.

where n is the identification number in the Reconciliation Report of a proposed member with the
same name as an existing member.

The Reconciliation Report is displayed by the RECONCILE command. To display the changes
you have made with the RUPD command enter a further RECONCILE command including the
INITIALIZE keyword.

The effects of the two forms of the RUPD command are the same. The RUPD command opens a
buffer in Update Mode containing a copy of the source record of the selected dictionary member
which you can then update interactively. You can only enter RUPD commands when working in
an interactive environment.

If the selected member is an ITEM, you can copy the form-description and USAGE clause of the
proposed member into the Update Buffer by using the I (Insert), F (Follow), and P (Precede) Line
Commands.

� �� RREP

�

�� RREP n

.

; �

�

ASG-Manager Products Relational Technology Support: SQL/DS

172

To enter the contents of the buffer into the dictionary use the FILE or SFILE commands. To
abandon the update without adding the contents to the dictionary use the QUIT or XQUIT
commands.

You can enter several RUPD Line Commands at the same time. The different Update Buffers are
stacked. Use the QUERY ACTIVE-BUFFERS command to find out which buffers you have
opened. The number of Update Buffers you can stack is determined by the buffer limit set in the
dictionary by the systems Administrator. Use the QUERY BUFFER-LIMIT command to find out
the buffer limit.

The I, F, and P Line Commands only copy the form-description and USAGE clause of the
proposed member corresponding to the existing member at the top of the buffer stack.

Having filed or quit the Update Buffer you will go to an Update Buffer lower in the buffer stack or
return to the Reconciliation Report.

If the Basic or Advanced Status facilities are installed the current status must be an update status.
If the member does not exist in the current status then the RUPD command copies the source
record of the member from the next visible status in which it does exist. If you subsequently FILE
or SFILE the member it is entered in the current status.

Refer to the ASG-ControlManager User’s Guide for details of the FILE, SFILE, QUIT, and
XQUIT commands.

Refer to the ASG-ControlManager User’s Guide for details of the QUERY BUFFER-LIMIT
command.

Syntax of the RUPD Line Command

Syntax of the RUPD Primary Command:

where n is a proposed member’s identification number in a Reconciliation Report.

SQL ACQUIRE
Use the SQL ACQUIRE command to generate an SQL ACQUIRE DBSPACE statement from the
definition of an SQL-DBSPACE member.

Use

To generate an SQL ACQUIRE DBSPACE statement, enter:

SQL ACQUIRE member-name ;

where member-name is an encoded SQL-DBSPACE member.

� �� RUPD

�

�� RUPD n

.

; �

�

9 Member Types and Commands

173

The generated SQL ACQUIRE statement can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file the SQL ACQUIRE statement in a USER-MEMBER you must specify an ONTO clause in
the SQL ACQUIRE command.

The Systems Administrator can tailor the output of the SQL ACQUIRE command so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed.

Refer to "SQL-DBSPACE" on page 184 for an example of an SQL ACQUIRE DBSPACE
statement generated from an SQL-DBSPACE member by the SQL ACQUIRE command.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Syntax of the SQL ACQUIRE Command

where sql/ds-dbspace-name is the name of a SQL DBSPACE member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL ALTER
Use the SQL ALTER command to generate one or more SQL ALTER TABLE statements from
the definition of a SQL-TABLE member.

Refer to "Syntax of the SQL ALTER Command" on page 179 for the syntax of the SQL ALTER
command.

� �SQL� AQUIRE sql/ds-dbspace-name

destination
� �;

�

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

ASG-Manager Products Relational Technology Support: SQL/DS

174

Introduction to the SQL ALTER Command
Use the SQL ALTER command to generate one or more SQL ALTER TABLE statements, from
the definition of a SQL-TABLE member, which if applied to your SQL/DS environment will
make the following alterations to a table:

• Add one or more columns

• Add or drop a primary key

• Add or drop a referential constraint

• Activate or deactivate a primary key

• Activate or deactivate a foreign key

• Activate or deactivate a primary key and all foreign keys

• A combination of the above.

The generated SQL ALTER TABLE statements can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file SQL ALTER TABLE statements in a USER-MEMBER you must specify an ONTO clause
in the SQL ALTER command.

The different SQL ALTER TABLE statements are generated from particular clauses in the
definition of the SQL-TABLE member specified in the SQL ALTER command. The SQL ALTER
command does not alter the SQL-TABLE member’s definition.

By accurately documenting a table in the definition of a SQL-TABLE member you can maintain
the table with SQL statements generated from the definition.

When generating SQL ALTER TABLE statements to add a column, primary key, or referential
constraint, or to activate or deactivate primary and foreign keys you should add the clauses from
which the SQL statements will be generated, before entering the SQL ALTER command.

If the clauses are not present an SQL statement will not be generated. The generated SQL
statement could also be rejected when applied to your SQL/DS environment if the clauses are
present but do not accurately document the table.

When generating an SQL ALTER TABLE statement to drop a referential constraint or primary
key you should drop the clauses from which the SQL statement will be generated, after entering
the SQL ALTER command. If the clauses have already been removed the SQL statement will not
be generated.

The Systems Administrator can tailor the output of the SQL ALTER command so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed.

9 Member Types and Commands

175

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Generating SQL Statements to Add Columns to a Table
Use the SQL ALTER command to generate one or more SQL ALTER TABLE statements which
if applied to your SQL/DS environment will add columns to a table.

To generate SQL ALTER TABLE statements to add columns to a table, enter:

SQL ALTER member-name ADD COLUMNS n ;

where:

member-name is an encoded SQL-TABLE member

n is a number from 1 to 299 identifying the columns to be added to the table. The columns
to be added to a table are the last n columns derived from the COLUMNS clause of the
SQL-TABLE member from which the SQL ALTER TABLE statement is being generated.
n must be less than the total number of columns derived from the COLUMNS clause.

A separate SQL ALTER TABLE statement is generated for each column to be added to a table.
An SQL statement to add a column to a table will be rejected when applied to your SQL/DS
environment if the column already exists in the table.

You should therefore ensure that the ITEMs and GROUPs which define the new columns to be
added to a table are specified in the COLUMNS clause after the members which define the
existing columns in a table. Existing columns should not be included in the n columns to be added
to a table.

The SQL/DS data type of columns generated in SQL ALTER TABLE statements is derived from
the definition of the ITEMs and GROUPS specified in the COLUMNS clause.

SQL/DS requires that new columns added to a table must allow a null or default value. The SQL
ALTER command therefore displays a warning message if any of the columns are defined in the
SQL-TABLE member definition as being NOT-NULL.

Refer to "Generating Column Data Types" on page 96 for details of generating column data types.

Refer to "Member Type and Command Descriptions" on page 143 for details of the COLUMNS
clause.

Refer to "Member Type and Command Descriptions" on page 143 for details of the NOT-NULL
keyword.

Generating an SQL Statement to Add or Drop a Primary Key on a Table
Use the SQL ALTER command to generate an SQL ALTER TABLE statement which if applied to
your SQL/DS environment will add or drop a primary key on a table.

ASG-Manager Products Relational Technology Support: SQL/DS

176

To generate an SQL ALTER TABLE statement to add a primary key, enter:

SQL ALTER member-name ADD PRIMARY-KEY ;

where member-name is an encoded SQL-TABLE member.

To generate an SQL ALTER TABLE statement to drop a primary key, enter:

SQL ALTER member-name DROP PRIMARY-KEY ;

Primary key columns are defined with the PRIMARY-KEY keyword in the SQL-TABLE
member. All columns in the SQL-TABLE that have an associated PRIMARY-KEY keyword are
generated as part of the primary key.

Columns which allow a null value cannot be part of the primary key. The SQL ALTER command
therefore displays a warning message if any of the columns defined in the SQL-TABLE member
as being part of the primary key do not have an associated NOT-NULL keyword.

The SQL statement will be rejected when submitted to SQL/DS if you attempt to add a primary
key to a table that already has one. The existing primary key will not be modified. If you wish to
replace it you should first use the SQL ALTER command to drop the existing primary key and
then to add the new one.

If you have replaced the primary key on a parent table you may also need to change the foreign
keys of dependent tables.

Generating an SQL Statement to Add or Drop a Referential Constraint on a Table
Use the SQL ALTER command to generate an SQL ALTER TABLE statement which if applied to
your SQL/DS environment will add or drop a referential constraint on a table.

To generate an SQL ALTER TABLE statement to add a referential constraint, enter:

SQL ALTER member-name ADD CONSTRAINT NAMED constraint-name ;

or

SQL ALTER member-name ADD CONSTRAINT NUMBER n ;

where:

member-name is an encoded SQL-TABLE member

constraint-name is a name specified in the NAMED clause of the SQL-TABLE
member which identifies the referential constraint

n is a number identifying the referential constraint by its sequence among other referential
constraints in the SQL-TABLE member definition.

To generate an SQL ALTER TABLE statement to drop a referential constraint, enter:

SQL ALTER member-name DROP CONSTRAINT NAMED constraint-name ;

9 Member Types and Commands

177

or

SQL ALTER member-name DROP CONSTRAINT NUMBER n ;

Referential constraints are defined in the CONSTRAINT clauses of SQL-TABLE members. The
SQL ALTER TABLE statement can be generated from a particular CONSTRAINT clause. A
SQL-TABLE member can have any number of CONSTRAINT clauses; to identify which clause
you want to generate you must select it by its name or sequence within the member’s definition.

For example, the command:

SQL ALTER CUST-TABLE ADD CONSTRAINT NUMBER 3 ;

would generate an SQL ALTER TABLE statement to add a referential constraint on a table from
the third CONSTRAINTS clause in the definition of the member CUST-TABLE.

The SQL statement will be rejected when submitted to SQL/DS if you attempt to add a referential
constraint that already exists in the table. The existing referential constraint will not be modified.
If you wish to replace it you should first use the SQL ALTER command to drop the existing
referential constraint and then to add the new one.

Refer to "Member Type and Command Descriptions" on page 143 for details of the
CONSTRAINT and NAMED clauses.

Generating an SQL Statement to Activate or Deactivate a Primary Key on a Table
Use the SQL ALTER command to generate an SQL ALTER TABLE statement which if applied to
your SQL/DS environment will activate or deactivate a primary key on a table.

To generate an SQL ALTER TABLE statement to activate a primary key, enter:

SQL ALTER member-name ACTIVATE-PRIMARY-KEY ;

where member-name is an encoded SQL-TABLE member.

To generate an SQL ALTER TABLE statement to deactivate a primary key, enter:

SQL ALTER member-name DEACTIVATE-PRIMARY-KEY ;

Primary key columns are defined with the PRIMARY-KEY keyword in the SQL-TABLE
member.

Activating and deactivating a primary key on a parent table will also implicitly activate or
deactivate foreign keys on its dependent tables.

You can generate an SQL ALTER TABLE statement to explicitly activate or deactivate a
particular foreign key.

You can also generate an SQL ALTER TABLE statement to activate or deactivate the primary and
foreign keys on a table and all the foreign keys on its dependent tables.

ASG-Manager Products Relational Technology Support: SQL/DS

178

Generating an SQL Statement to Activate or Deactivate a Foreign Key on a Table
Use the SQL ALTER command to generate an SQL ALTER TABLE statement which if applied to
your SQL/DS environment will activate or deactivate a foreign key on a table.

To generate an SQL ALTER TABLE statement to activate a foreign key, enter:

SQL ALTER member-name ACTIVATE CONSTRAINT NAMED constraint-name ;

or

SQL ALTER member-name ACTIVATE CONSTRAINT NUMBER n ;

where:

member-name is an encoded SQL-TABLE member

constraint-name is a name specified in the NAMED clause of the SQL-TABLE
member which identifies the referential constraint defining the foreign key

n is a number identifying the referential constraint by its sequence among the other
referential constraints in the SQL-TABLE member definition.

To generate an SQL ALTER TABLE statement to deactivate a foreign key, enter:

SQL ALTER member-name DEACTIVATE CONSTRAINT NAMED constraint-name ;

or

SQL ALTER member-name DEACTIVATE CONSTRAINT NUMBER n ;

Foreign keys are defined in the CONSTRAINT clauses of SQL-TABLE members. The SQL
ALTER TABLE statement can be generated from a particular CONSTRAINT clause. A
SQL-TABLE member can have any number of CONSTRAINT clauses: to identify which clause
you want to generate you must select it by its name or sequence within the member’s definition.

You can also generate an SQL ALTER TABLE statement to activate or deactivate the primary and
foreign keys on a table and all the foreign keys on its dependent tables.

Generating an SQL Statement to Activate or Deactivate Both a Primary Key and All Foreign Keys
Use the SQL ALTER command to generate an SQL ALTER TABLE statement which if applied to
your SQL/DS environment will activate or deactivate both the primary and foreign keys on a
parent table and all the foreign keys on its dependent tables.

To generate an SQL ALTER TABLE statement to activate both the primary key and all foreign
keys, enter:

SQL ALTER member-name ACTIVATE ALL ;

where member-name is an encoded SQL-TABLE member.

9 Member Types and Commands

179

To generate an SQL ALTER TABLE statement to deactivate both the primary key and all foreign
keys, enter:

SQL ALTER member-name DEACTIVATE ALL ;

The primary key is defined with the PRIMARY-KEY keyword and foreign keys in the
CONSTRAINT clauses of the SQL-TABLE member.

You can also generate an SQL ALTER TABLE statement to activate or deactivate a primary key
or a particular foreign key on a table.

Generating a Combination of SQL ALTER TABLE Statements
You can generate several SQL ALTER TABLE statements, from the definition of a SQL-TABLE
member, with a single SQL ALTER command.

For example, the command:

SQL ALTER CUST-TABLE ADD COLUMN 1 PRIMARY-KEY
CONSTRAINT NAMED ORDER-NO DEACTIVATE ALL;

would generate from the definition of the member CUST-TABLE four separate SQL ALTER
TABLE statements which if applied to your SQL/DS environment would:

• Add a column

• Add a primary key

• Add a referential constraint

• Deactivate both the primary key and foreign keys on the table.

You cannot specify two separate ADD, DROP, ACTIVATE, or DEACTIVATE clauses or repeat
a keyword within one of these clauses.

Filing Generated Output in a USER-MEMBER
Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO,
PRIVATE, PUBLIC, NEW, APPEND, REPLACE, PRINT, and NOPRINT keywords.

Syntax of the SQL ALTER Command

where sql/ds-table-name is the name of a SQL-TABLE member.

� �SQL� ALTER sql/ds-table-name alter-specification
<<<<<<<<<<<<<<<<<<<<<

� �

destination .

;

�

ASG-Manager Products Relational Technology Support: SQL/DS

180

alter-specification is:

where n is an integer.

referential-constraint is:

where:

n is as defined above

constraint-name is a name specified in the NAMED clause of an SQL-TABLE
member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL COMMENT and SQL LABEL

Use the SQL COMMENT and SQL LABEL command to generate respectively SQL COMMENT
ON and LABEL ON statements from the definition of an SQL-TABLE or SQL-VIEW member.

Use
To generate SQL COMMENT ON statements, enter:

SQL COMMENT member-name ;

To generate SQL LABEL ON statements, enter:

SQL LABEL member-name ;

ADD COLUMNS n
PRIMARY-KEY

referential-constraint

DROP PRIMARY-KEY

referential-constraint

ACTIVATE ALL

PRIMARY-KEY

referential-constraint

DEACTIVATE ALL

PRIMARY-KEY

referential-constraint

� �
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

NAMED constraint-name

� CONSTRAINT �NUMBER n

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

9 Member Types and Commands

181

where member-name is an encoded SQL-TABLE or SQL-VIEW member.

The generated SQL COMMENT ON and LABEL ON statements can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file SQL COMMENT ON or LABEL ON statements in a USER-MEMBER you must specify
an ONTO clause in the SQL COMMENT or SQL LABEL command.

SQL COMMENT ON and SQL LABEL ON statements can be generated for a table or view, and
for columns within a table or view. An SQL COMMENT ON statement is generated from every
SQL-COMMENT clause and an SQL LABEL ON statement from every SQL-LABEL clause in
the definition of the specified SQL-TABLE or SQL-VIEW member. If the member does not have
a SQL-COMMENT or SQL-LABEL clause then no statements are generated.

The Systems Administrator can tailor the output of the SQL COMMENT and SQL LABEL
commands so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic is displayed.

The Systems Administrator can also tailor the output of the SQL CREATE command so that SQL
CREATE, COMMENT ON, and LABEL ON statements are generated from the same member at
the same time.

Refer to "SQL-TABLE" on page 245 for an example of SQL CREATE, COMMENT ON, and
LABEL ON statements generated from a SQL-TABLE member by the SQL CREATE command.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Syntax of the SQL COMMENT Command

where:

sql/ds-table-name is the name of a SQL-TABLE member

sql/ds-view-name is the name of a SQL-VIEW member.

sql/ds-view-name

� SQL �sql/ds-table-nameCOMMENT

� �

destination .

;

ASG-Manager Products Relational Technology Support: SQL/DS

182

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

Syntax of the SQL LABEL Command

where:

sql/ds-table-name is the name of a SQL-TABLE member

sql/ds-view-name is the name of a SQL-VIEW member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL CREATE

Use the SQL CREATE command to generate an SQL CREATE statement for a SQL/DS object
from its definition in a dictionary member.

Use
To generate an SQL CREATE statement, enter:

SQL CREATE member-name ;

where member-name is an encoded SQL-INDEX, SQL-TABLE, or SQL-VIEW member.

The SQL CREATE command generates an SQL CREATE INDEX, CREATE TABLE, or
CREATE VIEW statement.

To generate SQL CREATE SYNONYM statements use the SQL SYNONYM command.

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

sql/ds-view-name

� SQL �sql/ds-table-nameLABEL

� �

destination .

;

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

9 Member Types and Commands

183

The generated SQL CREATE statement can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file the SQL CREATE statement in a USER-MEMBER you must specify an ONTO clause in
the SQL CREATE command.

The SQL/DS data type of a column in a table is derived from the definition of the ITEMS and
GROUPs specified in the COLUNMS clause of the SQL-TABLE member from which the SQL
CREATE TABLE statement is being generated.

The Systems Administrator can tailor the output of the SQL CREATE command so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed

• SQL CREATE, COMMENT ON, and LABEL ON statements are generated from the same
member at the same time.

Refer to "SQL-TABLE" on page 245 for an example of an SQL CREATE statement generated
from a SQL-TABLE member by the SQL CREATE command.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Refer to "Generating Column Data Types" on page 96 for details of generating column data types.

Syntax of the SQL CREATE Command

where sql/ds-member-name is the name of a SQL-INDEX, SQL-TABLE, or SQL-VIEW
member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

� �SQL� CREATE sql/ds-member-name

destination
� �

.

;

�

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

ASG-Manager Products Relational Technology Support: SQL/DS

184

SQL-DBSPACE
SQL/DS dbspaces are defined in the dictionary as SQL-DBSPACE members.

Refer to "Syntax of the SQL-DBSPACE Member Type" on page 187 for the syntax of the
SQL-DBSPACE member type.

Introduction to SQL-DBSPACE
To document an SQL/DS dbspace in the dictionary use the SQL-DBSPACE member type. To
define the dictionary member type enter SQL-DBSPACE at the start of your member definition
statement. Clauses are available to define the owner (the CREATOR-OWNER clause) and the
type of the dbspace. You can define the NHEADER, PAGES, PCTINDEX, PCTFREE, LOCK,
and STORPOOL parameters in clauses with those names.

Clauses may be declared in any order.

Note:
The name you give to an SQL-DBSPACE member may be used as the SQL/DS object name.

The AS Clause

Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

Defining the Owner of a Dbspace
Use a CREATOR-OWNER clause to specify the owner of a dbspace.

The syntax of the clause is as follows:

CREATOR-OWNER sql-user

where sql-user is the name of a dictionary member of the type SQL-USER, which represents
the Authorization ID of the owner of the dbspace. The owner of a dbspace is usually the creator,
but in SQL/DS Version 2 Release 2, the owner may not be the creator.

The clause is checked on encoding to ensure that the member specified is of the correct type. The
clause is checked on generation to ensure that the length of the derived name is compatible with
SQL/DS requirements.

This clause must be present for the successful generation of SQL ACQUIRE and DROP
statements.

Defining the Type of a Dbspace

Use one of the keywords PUBLIC or PRIVATE to define whether a dbspace is to be a public one
or a private one, respectively. The keywords are the same as those used by SQL and they have the
same meanings.

The clause is checked on encoding to ensure that only one of these options is specified.

�

9 Member Types and Commands

185

If you omit to specify the type of a dbspace, the SQL default of PRIVATE will apply.

Reserving Space for Header Pages
Use the NHEADER clause to specify the space to be reserved for header pages. The syntax of the
clause is as follows:

NHEADER integer

where integer is an integer in the range 1-8 inclusive, being the number of logical pages to be
reserved. The clause is checked on encoding to ensure that the number of pages you specify is
within the permitted range.

Defining the Number of Pages Required for a Dbspace
Use a PAGES clause to define the minimum number of logical pages you want a dbspace to have.
The syntax of the clause is as follows:

PAGES integer

where integer is the minimum number of logical pages required.

Defining Free Space for Indexes
Use a PCTINDEX clause to define the percentage of free space which you want to be left in a
dbspace for indexes. The syntax of the clause is as follows:

PCTINDEX integer

where integer is an integer of between 0 and 99. The clause is checked on encoding to ensure
that the percentage you specify is within the permitted range.

Defining Free Space
Use a PCTFREE clause to define the percentage of free space which you want to be left on each
page of the dbspace. The syntax of the clause is as follows:

PCTFREE integer

where integer is an integer in the range 0 to 99. The clause is checked on encoding to ensure
that the percentage you specify is within the permitted range.

Defining the Locking Level
Use a LOCK clause to define the locking level for a dbspace.

The syntax of the clause is as follows:

�

�

�

�

PAGE

DBSPACE

ROW

� �LOCK

ASG-Manager Products Relational Technology Support: SQL/DS

186

where PAGE, DBSPACE, and ROW are the permitted locking levels. The clause is checked on
encoding to ensure that the option specified is a valid one.

Note:
You may use the LOCK clause only if you have defined the dbspace as a PUBLIC one.

Defining the Storage Pool where Space is to be Acquired
Use a STORPOOL clause to define the number of the storage pool where a dbspace is to be
acquired. The syntax of the clause is as follows:

STORPOOL integer

where integer is the number of the storage pool.

Example: SQL-DBSPACE Definition and SQL Generation

Figure 33 SQL-DBSPACE Definition and SQL Generation.

1. The dbspace name is taken from the dictionary definition for the dbspace, according to the
rules for the derivation of external names. It is qualified by the name of the
CREATOR-OWNER.

2. The dbspace type PUBLIC is taken directly from the dictionary definition.

3, 4, 5, 6, 7, 8 The NHEADER, PAGES, PCTINDEX, PCTFREE, LOCK, and STORPOOL
parameters are taken directly from the dictionary definition.

� �

Dictionary Definition: Generated SQL Syntax:

ADD DB-SP01.
SQL-DBSPACE
CREATOR-OWNER US01
PUBLIC
NHEADER 8
PAGES 128
PCTINDEX 33
PCTFREE 15
LOCK DBSPACE
STORPOOL 3
;

ACQUIRE PUBLIC DBSPACE NAMED US01.DB_SP01
(NHEADER = 8
, PAGES = 128
, PCTINDEX = 33
, PCTFREE = 15
, LOCK = DBSPACE
, STORPOOL 3)

3
4

5
6

7
8

2

1

9 Member Types and Commands

187

Syntax of the SQL-DBSPACE Member Type

where:

referred-member is the name of an SQL-DBSPACE dictionary member

sql-user-name is the name of an SQL-USER dictionary member

integer (in the NHEADER clause) is an integer in the range 1 to 8

integer (in the PAGES clause) is an integer within the permitted range, being the number
of pages required for the dbspace

integer (in the PCTINDEX clause) is an integer in the range 0 to 99

integer (in the PCTFREE clause) is an integer in the range 0 to 99

integer (in the STORPOOL clause) is an integer within the permitted range, being the
number of the storage pool in which the dbspace is to be acquired.

SQL DROP
Use the SQL DROP command to generate an SQL DROP statement. An impact analysis report is
generated displaying the impact the SQL DROP statement will have in your SQL/DS
environment.

Refer to "Syntax of the SQL DROP Command" on page 190 for the syntax of the SQL DROP
command.

Generating an SQL DROP Statement
To generate an SQL DROP statement, enter:

SQL DROP member-name ;

where member-name is an encoded SQL-DBSPACE, SQL-INDEX, SQL-TABLE, or
SQL-VIEW member.

AS referred-member

� SQL-DBSPACE �

PRIVATE

� �

PUBLICCREATOR-OWNER sql-user-name

NHEADER integer PAGES integer
� �

PCTINDEX integer PCTFREE integer
� �

PAGE

DBSPACE

ROW

� �

LOCK STORPOOL integer

common clause
� �

� �

.

;

�

ASG-Manager Products Relational Technology Support: SQL/DS

188

The SQL DROP command generates an SQL DROP DBSPACE, DROP INDEX, DROP TABLE,
or DROP VIEW statement.

To generate SQL DROP SYNONYM statements use the SQL SYNONYM command.

The generated SQL DROP statement can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file the SQL DROP statement in a USER-MEMBER you must specify an ONTO clause in the
SQL DROP command.

An SQL DROP statement will, when applied to your SQL/DS environment, drop both the
specified SQL/DS object and other SQL/DS objects dependent upon it. For example, if you drop a
table then all views and indexes dependent on that table are also dropped.

The SQL DROP command therefore also generates an impact analysis report displaying the
impact the SQL DROP statement will have in your SQL/DS environment.

The report is always printed unless the keyword NO-IMPACT has been specified in the command.
You cannot automatically file impact analysis reports in a USER-MEMBER.

The Systems Administrator can tailor the output of the SQL DROP command so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

The Impact Analysis Report
The SQL DROP command enables you to assess the impact of the SQL DROP statement you have
generated by also generating an impact analysis report displaying the impacted members in the
dictionary, and therefore the SQL/DS objects they document, that would be dropped or affected
were that SQL DROP statement to be applied to your SQL/DS environment.

An impact analysis report is always generated except when a SQL DROP command is applied to a
SQL-INDEX member (as only the specified index would be dropped or affected by the SQL
DROP INDEX statement), or the keyword NO-IMPACT has been specified in the command.

Members impacted by the SQL DROP command are reported but are not removed from the
dictionary. When you have dropped the object from the SQL/DS environment you should (unless
you intend at some future date to use the SQL CREATE command to recreate the object and those
dependent on it) update the dictionary to reflect the changes. The impact analysis report will help
you carry out these updates.

9 Member Types and Commands

189

How to Prevent an Impact Analysis Report being Generated
You can prevent an impact analysis report being generated by specifying the keyword
NO-IMPACT in the SQL DROP command.

To generate an SQL DROP statement without an impact analysis report, enter:

SQL DROP member-name NO-IMPACT ;

where member-name is an encoded SQL-DBSPACE, SQL-INDEX, SQL-TABLE, or
SQL-VIEW member.

An impact analysis report is not generated when a SQL DROP command is applied to a
SQL-INDEX member.

The Structure of the Impact Analysis Report

The impact analysis report has the following structure:

Figure 34 The Structure of the Impact Analysis Report

where process-member is a PROGRAM, MODULE, SYSTEM, or MMR-SYSTEM member.

For example, if a SQL-TABLE member is specified in a SQL DROP command then an SQL
DROP TABLE statement is generated which if applied to your SQL/DS environment will drop
that table and any views, indexes, and privileges dependent on it. Synonyms and SQL statements
which refer to the dropped tables and views will be affected. SQL statements can be imbedded in
programs which can in turn have privileges granted on them.

The impact analysis report will detail the SQL-TABLE, SQL-VIEW, SQL-INDEX, SQL-USER,
SQL-PRIVILEGE, and process members that document the SQL/DS objects which will be
dropped and the synonyms, programs, and program privileges that will be affected.

The impact analysis report therefore shows you the predicted effects in your SQL/DS environment
of the SQL DROP statement you have generated from the dictionary.

SQL-DBSPACE

SQL-TABLE

SQL-VIEW

SQL-VIEW

SQL-INDEX

SQL-USER
(SYNONYM)

SQL-USER
(SYNONYM)

SQL-PRIVILEGE
(ALL/TABLE)

SQL-PRIVILEGE
(ALL/TABLE)

process-member

SQL-PRIVILEGE
(PROGRAM)

process-member

SQL-PRIVILEGE
(PROGRAM)

(see *)

ASG-Manager Products Relational Technology Support: SQL/DS

190

Filing Generated Output in a USER-MEMBER
Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO,
PRIVATE, PUBLIC, NEW, APPEND, REPLACE, PRINT, and NOPRINT keywords.

Syntax of the SQL DROP Command

where sql/ds-member-name is the name of a SQL-DBSPACE, SQL-INDEX, SQL-TABLE,
or SQL-VIEW member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL GRANT and SQL REVOKE

Use the SQL GRANT and SQL REVOKE commands to generate respectively SQL GRANT and
REVOKE statements from the definition of a SQL-PRIVILEGE member.

Use
To generate SQL GRANT statements, enter:

SQL GRANT member-name ;

To generate SQL REVOKE statements, enter:

SQL REVOKE member-name ;

where member-name is an encoded SQL-PRIVILEGE member.

The generated SQL GRANT and REVOKE statements can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file SQL GRANT or REVOKE statements in a USER-MEMBER you must specify an ONTO
clause in the SQL GRANT or SQL REVOKE command.

� �SQL� DROP sql/ds-member-name

NO-IMPACT
� �

destination .

;

�

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

9 Member Types and Commands

191

A single SQL GRANT or SQL REVOKE command will generate a separate SQL GRANT or
REVOKE statement for each SQL-TABLE, SQL-VIEW, or PROGRAM member specified in the
ON clause of the SQL-PRIVILEGE member.

The generated SQL GRANT statements will include the WITH GRANT OPTION clause if the
WITH-GRANT-OPTION keyword is present in the definition of the SQL-PRIVILEGE member.

SQL REVOKE statements cannot be generated with the BY clause as this would require keeping
track of grantors who pass on a privilege they themselves have been granted with an SQL GRANT
statement including the WITH GRANT OPTION.

The Systems Administrator can tailor the output of the SQL GRANT and SQL REVOKE
commands so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed.

Refer to "SQL-PRIVILEGE" on page 229 for an example of an SQL GRANT statement generated
from an SQL-PRIVILEGE member.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Syntax of the SQL GRANT Command

where sql/ds-privilege-name is the name of a SQL-PRIVILEGE member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

Syntax of the SQL REVOKE Command

where sql/ds-privilege-name is the name of a SQL-PRIVILEGE member.

� �SQL� GRANT sql/ds-privilege-name

� �

destination .

;

�

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

� �SQL� REVOKE sql/ds-privilege-name

� �

destination .

;

�

ASG-Manager Products Relational Technology Support: SQL/DS

192

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL-INDEX
SQL/DS indexes are defined in the dictionary as SQL-INDEX members.

Refer to "Syntax of the SQL-INDEX Member Type" on page 196 for the syntax of the
SQL-INDEX member type.

Introduction to SQL-INDEX
To document an SQL/DS index in the dictionary use the SQL-INDEX member type. To define the
dictionary member type enter SQL-INDEX at the start of your member definition statement.

Clauses and keywords are available which allow you to specify the owner of an index (the
CREATOR-OWNER clause), and the table to be indexed (the ON clause). You can specify the
columns which are to be indexed (in a CONTAINS clause). The keyword UNIQUE is available to
define an index as unique. You can define the percentage of free space to be left in an index (using
the PCTFREE clause).

Clauses may be declared in any order.

The CREATOR-OWNER, ON, and CONTAINS clauses must be present for the successful
generation of an SQL CREATE statement.

The CREATOR-OWNER clause is the only clause which must be present for the successful
generation of an SQL DROP statement.

Note:
The name you give to an SQL-INDEX member may be used as the SQL/DS object name.

Refer to "Naming Conventions for SQL/DS Members" on page 89 for details of naming
conventions, and the derivation of external names.

The AS Clause
Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

9 Member Types and Commands

193

Defining the Owner of an SQL-INDEX
Use a CREATOR-OWNER clause to specify the owner of an index. The syntax of the clause is as
follows:

CREATOR-OWNER sql-user

where sql-user is the name of a dictionary member of the type SQL-USER, which represents
the Authorization ID of the owner of the index. The owner of an index is usually the creator, but in
SQL Version 2 Release 2, the owner may not be the creator. The clause is checked on encoding to
ensure that the member specified is of the correct type. The clause is checked on generation to
ensure that the length of the derived name is compatible with SQL requirements.

Defining an Index as Unique
Use the keyword UNIQUE to define an index as unique, that is, the column or columns which are
being indexed must not have duplicate entries in the table being indexed. If a single column is
being indexed, then no value may appear more than once in that column. If more than one column
is being indexed, then any given set of values can only appear once.

Defining the Table to be Indexed
Use an ON clause to specify the table which is to be indexed. The format of the clause is as
follows:

ON sql-table-name

where sql-table-name is the name of a dictionary member of the type SQL-TABLE. The
clause is checked on encoding to ensure that the member specified is of the correct type. The
clause is checked on generation to ensure that the length of the derived name is compatible with
SQL/DS requirements.

This clause must be present for the successful generation of SQL CREATE statements.

Defining the Columns being Indexed
Use a CONTAINS clause to specify the column or columns which form the index key. The
keyword CONTAINS is followed by one or more column-specifications. The syntax of the clause
is as follows:

contains-clause is:

single-column-clause is:

� �

� �

� �CONTAINS contains-clause
>>>>>>> , >>>>>>>>

(integer)
single-column-clause

group-name EXPAND
� �

ASCENDING
DESCENDING

� �

PUBLIC

� �PRIVATE

KNOWN-AS local-name

ASG-Manager Products Relational Technology Support: SQL/DS

194

where:

(integer) is the number of columns in a 'column set'. The column specified in the
following single-column-clause will be repeated by the number of times you have specified.
On generation of an SQL statement each column produced will be suffixed automatically by
a number; the first column will be suffixed by 1, the second by 2, and so on. For example,
suppose you have a set of two columns, PERIOD_1 and PERIOD_2. If you specify (2)
PERIOD in the CONTAINS clause (where PERIOD is the name of the ITEM dictionary
member which represents the column) two columns, PERIOD_1 and PERIOD_2, will be
generated.

item-name is the name of a dictionary member of the type ITEM, which represents one
column in the table being indexed

group-name in the single-column-clause is the name of a dictionary member of the type
GROUP, which represents one column in the table being indexed.

Use a KNOWN-AS clause to specify a local-name which will be used as the name of the SQL/DS
indexing column.

Use the group-name EXPAND option to refer to a collection of GROUPs and/or ITEMs, each of
which represents a column being indexed. Group-name is the name of a dictionary member of the
type GROUP.

Note:
Local-names may not be specified for EXPANDed members: this is checked on encoding.

You may specify a maximum of 16 columns in an index key. The clause is checked on generation
to ensure that the number of columns specified does not exceed this maximum.

The CONTAINS clause is checked on encoding to ensure that the members specified are of the
correct type (that is, GROUPs or ITEMS). The clause is checked on generation to ensure that the
length of the derived names of the columns is compatible with the external environment.

The clause is checked on generation also to ensure that no duplicate column-names have been
specified.

Each column-name in an index must have the same, corresponding, column-name in the table it
indexes.

Use one of the keywords ASCENDING or DESCENDING to determine the sort-sequence for
columns in the index. If you omit to specify a sort-sequence, none will be generated and the SQL
default will apply.

Defining Several Columns at Once in an SQL-INDEX
Use a group-name EXPAND clause to specify a number of columns at once. The syntax of the
clause is as follows:

group-name EXPAND� �

9 Member Types and Commands

195

where group-name is the name of a dictionary member of the type GROUP. The purpose of this
clause is to facilitate the generation of several columns in the index at once; it is a shorthand way
of referring to a number of GROUPs and ITEMs (that is, all those contained by the specified
GROUP), which will each represent one column in the index. Your installation may already have
GROUPs defined in its dictionary which are used in existing applications. These GROUPs may
represent records or segments that now need to have counterparts in the SQL/DS environment.

Because of the simpler 'flat-file' structures supported by SQL/DS you need to observe the
following points.

 A GROUP to be EXPANDed should not contain any ELSE clauses. These give rise to record
'overlays', that is, records in which certain fields may share the same areas of physical storage. In
SQL/DS such a concept has no meaning, since a column in an index must have a name unique in
the index and cannot 'overlay' or share data with any other column in the index. If you do have an
ELSE clause, it will be ignored.

A group to be EXPANDed may contain 'nested' groups as well as items. Nesting can continue to
any depth; the only limit is the amount of memory available. However, whereas in segments and
host language data structures, such nesting is meaningful, in an SQL/DS index, it is not. Therefore,
intermediate levels in the data structure are removed, in order to generate a 'flat' structure.

You may not specify a KNOWN-AS clause or a version for an EXPANDed group; this is checked
on encoding. This means that the column-names generated from a group-name EXPAND clause
are taken either from the KNOWN-AS names of the ITEMs and/or GROUPs contained by the
GROUP specified, or, failing that, from their dictionary names. The length of any column-name
may be no longer than 16 characters; this is checked on encoding. The clause is also checked on
generation to ensure that the length of the derived names is compatible with the external
environment.

Defining Free Space
Use a PCTFREE clause to define the percentage of free space you want to be reserved in the index
for later updates and insertions. The syntax of the clause is as follows:

>--- PCTFREE integer --->

where integer is an integer in the range 0 to 99, being the percentage of the total space of the
index which you want to reserve. The clause is checked on encoding to ensure that the value
specified is within the permitted range.

ASG-Manager Products Relational Technology Support: SQL/DS

196

Example: SQL-INDEX Definition and SQL Generation

Figure 35 SQL-INDEX Definition and SQL Generation

1. The unqualified SQL/DS name for the index is taken from the SQL ALIAS defined in the
member definition statement.

2. The SQL ALIAS of the CREATOR-OWNER (member
SALES-ACCOUNT-DEPT-SQL-USR) is used to fully qualify the index name. This is the
SQL/DS object name for the index.

3. The dictionary member name of the table to be indexed is CUSTOMER-INVOICE-TABLE
which is converted by the Name Reduction Process to an external name of
CUST_INVOIC_TABLE. It is qualified by the table owner’s Authorization 1D, which is
derived from the SQL ALIAS of the SQL-USER member which represents the
Authorization ID (and which is defined in the CREATOR-OWNER clause of the table).

4. The CONTAINS clause is converted to an SQL column-specification by using the SQL
ALIAS of member CUSTOMER-CODE and adding the SQL/DS abbreviation ASC for
ASCENDING.

5. The PCTFREE parameter is taken directly from the dictionary definition.

Syntax of the SQL-INDEX Member Type

ADD CUSTOMER-CODE-INDEX;
SQL-INDEX
ALIAS SQL
CREATOR-OWNER
ON
CONTAINS
PCTFREE
;

'CUST-CODE-INDX'
SALES-ACCOUNT-DEPT-SQL-USR
CUSTOMER-INVOICEE-TABLE
CUSTOMER-CODE ASCENDING
25

1
2
3
4
5

Generated SQL Syntax:

CREATE INDEX SLDEP.CUST_CODE_INDX
ON PSGP00.CUST_INVOIC_TABLE
(CUST_CODE ASC)
PCTFREE 25

;

1
2

3
4
5

Dictionary Definition:

AS referred-member

� SQL-INDEX �

� �

UNIQUECREATOR-OWNER sql-user-name

ON sql-table-name CONTAINS contains-clause
� �<<<<<<< , <<<<<<<<

PCTFREE integer common clauses
� �

� �

.

;

�

9 Member Types and Commands

197

where:

referred-member is the name of an SQL-INDEX dictionary member

sql-user-name is the name of an SQL-USER dictionary member

sql-table-name is the name of an SQL-TABLE dictionary member

integer is an integer in the range 0 to 99.

contains-clause:

where:

integer is the number of columns in a 'column set'

group-name is the name of a GROUP dictionary member.

single-column-clause:

where:

item-name is the name of an ITEM dictionary member

group-name is the name of a GROUP dictionary member

local-name consists of no more than 18 characters.

SQL LABEL

Refer to "SQL COMMENT and SQL LABEL" on page 180 for details of the SQL LABEL
command.

SQL LIST CYCLES
Use the SQL LIST CYCLES command to identify the cycles found in the SQL design present in
the Workbench Design Area (WBDA) and to list the tables which appear within each cycle.

Use
A cycle can be described as a path of relationships connecting a table to itself, where the arrows
representing the relationships all flow in the same direction. The tables appearing in this path are
said to be in cyclic order.

 (integer)
single-column-clause

group-name EXPAND
� �

ASCENDING
DESCENDING

� �

group-name

� �item-name

KNOWN-AS local-name

ASG-Manager Products Relational Technology Support: SQL/DS

198

To list the tables in each cycle in cyclic order, beginning with the table (in the cycle) having the
lowest WBDA number, enter

SQL LIST CYCLES ;

To list the tables in each cycle alphanumerically, enter:

SQL LIST CYCLES ALPHABETICALLY ;

Named tables in the cycle are listed in alphanumerical order of table name, followed by any
unnamed tables in order of WBDA number.

The SQL LIST CYCLES command can be executed only if the WBDA contains normalized data.
Otherwise, the command is terminated and a message of explanation is output. If the WBDA
contains normalized data but no SQL design, the command causes the SQL design to be generated
before producing the list.

For each SQL table appearing in a cycle, the list includes its WBDA number, its primary key, its
name (if one has been assigned) and, if the table appears in more than one cycle, the keyword
MULTIPLE.

In the following diagram, an example is pictured of a cycle with its path of tables and connecting
relationships:

Figure 36 A Cycle and its Path of Tables and Relationships

Refer to "Output from the SQL LIST CYCLES Command" on page 74 for details of the SQL
LIST CYCLES command output.

Refer to "Introduction to Referential Structures and Cycles" on page 27 for further discussion of
cycles and how they can affect design decisions.

Syntax of the SQL LIST CYCLES Command

SQL LIST TABLES
Use the SQL LIST TABLES command to produce a list of all or some of the tables appearing in
the SQL design generated in the Workbench Design Area (WBDA).

COURSE

STUDENTLANGUAGE

ALPHABETICALLY

� SQL LIST CYCLES

.

; �

�

9 Member Types and Commands

199

Use
To list all the tables in the SQL design in order of WBDA number, enter:

SQL LIST TABLES ;

To list all tables alphanumerically, enter:

SQL LIST TABLES ALPHABETICALLY ;

Named tables are listed in alphanumeric order of table name, followed by any unnamed tables in
order of WBDA number.

To list some of the tables in the SQL design, you make your selection based on table type. You can
select any number of table types in the command.

To list a selection of tables in order of WBDA number, enter:

SQL LIST TABLES selection ;

where selection is one or more of the following keywords:

• ROOTS indicates that every root parent table is to be listed

• PARENTS is used to select every parent table for listing whether it is a root parent or
a table which is both a parent and a dependent

• LEAFS or LEAVES is used to select every leaf dependent table for listing

• DEPENDENTS indicates that every dependent table is to listed whether it is a leaf
dependent or a table which is both a dependent and a parent

• INDEPENDENT indicates that every table is to be listed which is neither a parent nor
a dependent table, that is, a table which does not participate in any foreign key
relationships.

To list all selected named tables alphanumerically followed by any selected unnamed tables in
order of WBDA number, enter:

SQL LIST TABLES ALPHABETICALLY selection ;

where selection is defined as above.

The command can be executed only if the WBDA contains normalized data. Otherwise, the
command is terminated and a message of explanation is output. If the WBDA contains normalized
data but no SQL design, the command causes the SQL design to be generated before producing the
list.

For each SQL table selected, the list includes the WBDA number of the table, its primary key, its
name (if one has been assigned) and its type.

Refer to "Description of the SQL LIST TABLES Output" on page 73 for a description of the
various table types.

ASG-Manager Products Relational Technology Support: SQL/DS

200

Refer to "Output from the SQL LIST TABLES Command" on page 73 for details of the SQL
LIST TABLES command output.

Syntax of the SQL LIST TABLES Command

where table-type is:

SQL PLOT CLUSTER
Use this command to produce an SQL Cluster Plot of all or some of the table in the SQL design.

Refer to "Syntax of the SQL PLOT CLUSTER Command" on page 202 for the syntax of the SQL
PLOT CLUSTER command.

Introduction to the SQL PLOT CLUSTER Command
Use the SQL PLOT CLUSTER command to produce a SQL Cluster Plot of all or some of the
tables in the SQL design generated in the Workbench Design Area (WBDA).

You must enter one (and only one) of the following keywords or clauses in the command to
indicate your selection of the tables to be displayed:

• The ALL keyword to select all the tables in the WBDA

• The NAME clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by number. If you also enter the keyword
ALPHABETICALLY, the selected tables will be output alphanumerically.

For each selected table, the output shows a diagram in cluster form of its foreign key relationships,
if any, with the other tables in the SQL design. When all the clusters have been displayed, the SQL
Design Relationship Matrix is output. This is a two-dimensional table which summarizes all of the
relationships holding between the tables of the SQL design, whether or not they have been
selected for display.

The command can be used only if the WBDA contains normalized data. If there is no data in the
WBDA, or if it has not been normalized, you are informed and the command is terminated. If the
WBDA contains normalized data but no SQL design, this command causes the SQL design to be
generated and then produces the plot.

The USING FORMAT option of this command is available only if you have the User Formatted
Output facility installed. It allows you to specify a valid FORMAT member of the dictionary in
order to tailor the format in which the tables are output.

ALPHABETICALLY
� SQL LIST CYCLES �

� �

table-type .

;

�

ROOTS PARENTS LEAFS
LEAVES

� �

DEPENDENTS INDEPENDENTS
� �

9 Member Types and Commands

201

Displaying All the Tables in the Workbench Design Area
To produce an SQL Cluster Plot displaying every table in the Workbench Design Area (WBDA),
enter:

SQL PLOT CLUSTER ALL ;

This displays the tables in order of WBDA number.

To display all the tables alphanumerically, enter:

SQL PLOT CLUSTER ALL ALPHABETICALLY ;

This causes the named tables to be displayed in alphanumeric order of table name, followed by
any unnamed tables in ascending order of WBDA number.

Displaying Tables Selected by Name
To produce a SQL Cluster Plot displaying tables selected by name, enter:

SQL PLOT CLUSTER NAMES name-list ;

where name-list is a list of one or more valid names of tables present in the Workbench
Design Area (WBDA). Table names in name-list must be separated by commas.

Tables are displayed in the order listed unless the keyword ALPHABETICALLY also is specified
in the command.

To display the tables in alphanumeric order of table name, enter:

SQL PLOT CLUSTER NAMES name-list ALPHABETICALLY;

For example:

SQL PLOT CLUSTER NAMES DEPARTMENT, OFFICE, EMPLOYEE ALPHABETICALLY ;

Displaying Tables Selected by Number
This is the only way to select tables in the Workbench Design Area (WBDA) which have not yet
been named.

To produce a SQL Cluster Plot of tables selected by their WBDA number, enter:

SQL PLOT CLUSTER NUMBERS range-list ;

where range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

TO n
m ��

ASG-Manager Products Relational Technology Support: SQL/DS

202

where m and n are valid WBDA table numbers and n, if it appears, is greater than m. Every
table is selected whose WBDA number appears in the list or falls within a range appearing
in the list. Tables are displayed in the order listed unless the keyword ALPHABETICALLY
is also specified in the command.

To display the listed tables alphanumerically, enter:

SQL PLOT CLUSTER NUMBERS range-list ALPHABETICALLY ;

This causes the named tables in range-list to be displayed in alphanumeric order of table name,
followed by any unnamed tables in ascending order of WBDA number.

An example of this option is shown below:

SQL PLOT CLUSTER NUMBERS 1,4,6 TO 12,17 TO 20,25 ALPHABETICALLY ;

Displaying Tables in a Specific Format
To produce a cluster plot of tables in a format tailored to your requirements, enter:

SQL PLOT CLUSTER selection USING FORMAT format-member ;

where:

format-member is the name of a previously defined FORMAT member of the
dictionary. Tables are output according to the specifications in the FORMAT member.

selection is one of the following:

• ALL

• NAMES name-list

• NUMBERS range-list.

Syntax of the SQL PLOT CLUSTER Command

where name-list is a list of validly named tables in the WBDA. If there are two or more names
in the list they must be separated by commas

range-list is a list of one or more numeric ranges, separated

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

NAMES name-list

NUMBERS range-list

� SQL PLOT CLUSTER �ALL�

ALPHABETICALLY
� �

� �

USING FORMAT format member .

;

TO n
m ��

9 Member Types and Commands

203

format-member is the name of a previously defined, valid format member.

SQL PLOT REFERENTIAL-STRUCTURES
Use this command to produce an SQL Referential Structures Plot of all or a single one of the
referential structures in the SQL design.

Refer to "Syntax of the SQL PLOT REFERENTIAL-STRUCTURES Command" on page 207 for
the syntax of the PLOT REFERENTIAL-STRUCTURES command.

Introduction to the SQL PLOT REFERENTIAL-STRUCTURES Command
Use the SQL PLOT REFERENTIAL-STRUCTURES command to produce the SQL Referential
Structures Plot, a consolidated overview display of one or all of the referential structures in the
SQL design present in the Workbench Design Area (WBDA).

The command can be executed only if the WBDA contains normalized data. Otherwise, the
command is terminated and a message of explanation is output. If the WBDA contains normalized
data but no SQL design, the command causes the SQL design to be generated before producing the
list.

A referential structure can be described as a set of tables and relationships such that each table in
the set is either a parent or a dependent of itself or of some other table in the set. Every table that is
a parent or dependent in the set is part of exactly one referential structure.

The following diagram illustrates a referential structure in the case of the Department Model
example:

Figure 37 Department Model: A Referential Structure

For each referential structure displayed in a SQL Referential Structures Plot, one or more
individual hierarchical plots are produced, each starting with a seed table. The seed used in the
(first) plot for the first referential structure displayed is called the primary seed. Any other plots
required for any of the structures displayed are called additional plots beginning with additional
seeds.

DEPARTMENT-NO
EMPLOYEE-NO

DEPARTMENT-NO

OFFICE-LOCATION
DEPARTMENT-NO

OFFICE-LOCATION

MANAGER-NO

EMPLOYEE-NO

A

DEPARTMENT-MEMBER

DEPARTMENT

OFFICE-DEPARTMENT

EMPLOYEE

MANAGER

OFFICE

ASG-Manager Products Relational Technology Support: SQL/DS

204

You can display all of the referential structures of the SQL design present in the WBDA by
specifying the ALL keyword in the command, or you can indicate that only a single referential
structure is to be displayed by including a SEED clause specification. Either ALL or SEED must
be specified.

You can further specify:

• The keyword PARENTS to indicate that only parent tables and relationships are to be
displayed in the plot, or

• The keyword DEPENDENTS to indicate that only dependent tables and relationships are to
be displayed.

If both parent and dependent tables and relationships are to be displayed, then neither PARENTS
nor DEPENDENTS should be specified.

Refer to "Introduction to Referential Structures and Cycles" on page 27 for further discussion of
referential structures.

Displaying All Referential Structures
Use the ALL keyword in the SQL PLOT REFERENTIAL-STRUCTURES command to display
all of the referential structures of the SQL design in the SQL Referential Structures Plot. For each
structure displayed, this will cause one or more hierarchical plots to be produced representing
every table and relationship in the structure. Each independent table, if any, is also displayed in an
additional seed-only plot.

Specifying the ALL keyword is the only way to ensure that every table and relationship in the
SQL design is displayed in the SQL Referential Structures Plot.

How the tables and relationships are displayed and whether or not each referential structure can be
displayed in a single hierarchical plot, depends on whether one or the other (or neither) of the
PARENTS and DEPENDENTS keywords is also specified in the command.

To depict each referential structure by a single hierarchical plot, enter:

SQL PLOT REFERENTIAL-STRUCTURES ALL ;

without specifying either PARENTS or DEPENDENTS.

Then, for each referential structure in the SQL design, beginning with the seed, the plot includes
the entire referential structure, displaying all the remaining tables in the structure, both dependent
and parent, and all the foreign key relationships.

9 Member Types and Commands

205

The seed for each plot is selected automatically, as follows:

• If there are any root parent tables in the SQL design, the root parent whose number in the
Workbench Design Area (WBDA) is the lowest is chosen as the primary seed

• Each additional seed, in turn, is the lowest numbered root parent table which has not already
been displayed

• If, at any point, there are remaining referential structures in the design (and, therefore,
additional plots required), but no remaining root parent tables, that is, each remaining
structure contains one ore more cycles instead of root parents, then ASG-DesignManager
selects as the next seed the lowest numbered (non-independent) table remaining in the SQL
design. This is repeated until all the tables of all the referential structures have been
displayed.

• Finally, if there are any independent tables in the SQL design, each is displayed as a
seed-only additional plot. They are selected for display in order of WBDA number.

To display only dependent tables and relationships (following the seed) in each hierarchical plot,
enter:

SQL PLOT REFERENTIAL-STRUCTURES ALL DEPENDENTS ;

This does not ensure that each referential structure can be displayed in a single hierarchical plot.
Additional plots may be required to complete the display.

Seeds for the plots are selected automatically in the same way as selected when neither
DEPENDENTS nor PARENTS is specified (beginning with the lowest numbered root parent table
in the SQL design, as indicated above). Thus, a separate hierarchical plot is produced for each root
parent table that has not already been displayed. Although more than one plot may belong to the
same referential structure, the display produced by this variant of the command is often in the most
convenient form for the user.

To display only parent tables and relationships (following the seed) in each hierarchical plot,
enter:

SQL PLOT REFERENTIAL-STRUCTURES ALL PARENTS ;

Then, as with DEPENDENTS, each referential structure may not be depicted by a single
hierarchical plot. Additional plots may be required.

ASG-Manager Products Relational Technology Support: SQL/DS

206

The seed for each plot is selected automatically, as follows:

• If there are any leaf dependent tables in the SQL design, the leaf dependent with the lowest
WBDA number is chosen as the primary seed

• Each additional seed, in turn, is the lowest numbered leaf dependent table which has not
already been displayed

• If, at any point, there are remaining referential structures in the design (and, therefore,
additional plots required), but no remaining leaf dependent tables, that is, each remaining
structure contains one or more cycles instead of leaf dependents, then ASG-DesignManager
selects as the next seed the lowest numbered (non-independent) table remaining in the SQL
design. This is repeated until all the tables of all the referential structures have been
displayed.

• Finally, if there are any independent tables in the SQL design, each is displayed as a
seed-only additional plot. They are selected for display in order of WBDA number.

Thus, a separate hierarchical plot is produced for each leaf dependent table that has not already
been displayed.

Displaying a Single Referential Structure
Use the SEED clause, with a table specified as seed, in the SQL PLOT
REFERENTIAL-STRUCTURES command to display all or part of a single referential structure
(or a single independent table) from the SQL design present in the Workbench Design Area
(WBDA). Just one hierarchical plot is produced.

Starting with the specified seed, the plot displays a related set of tables and their connecting
relationships from the referential structure in which the selected seed appears. (Recall that a table
that participates in a relationship appears in one and only one referential structure.)

How the tables and relationships are displayed and whether or not the entire referential structure
appears in the plot depends on whether one or the other (or neither) of the PARENTS and
DEPENDENTS keywords has also been specified in the command and also on whether the seed
table specified is a parent or dependent (or independent) table and whether or not it is a root or a
leaf.

You can use the SQL LIST TABLES command to help you choose appropriate seeds, because the
output produced indicates the table type; that is, it identifies root, leaf, parent, dependent, and
independent tables.

To ensure that the hierarchical plot produced represents the entire referential structure in which the
seed appears, enter:

SQL PLOT REFERENTIAL-STRUCTURES SEND selection ;

without specifying either PARENTS or DEPENDENTS.

9 Member Types and Commands

207

selection is one of the following:

• NUMBER number, or

• NAME name,

where number or name identifies, by WBDA number or table name, respectively, a
non-independent table of the SQL design.

Then, beginning with the specified seed, the plot includes all of the remaining tables in the
structure, both dependent and parent, and all of the foreign key relationships. (If, on the other
hand, an independent table is specified in the SEED clause, then only the seed table will be
displayed in the plot.)

To display only dependent tables and relationships (following the seed) in the plot, enter;

SQL PLOT REFERENTIAL-STRUCTURES SEED selection DEPENDENTS ;

where selection is defined as above.

No parent relationships are traversed and, therefore, the only tables displayed following the seed
are its descendants in the referential structure. As a consequence, the entire referential structure in
which the seed appears may not be represented in the plot. (If the specified seed is a leaf table or
an independent table, then only the seed table will be displayed.)

To display only parent tables and relationships (following the seed), enter:

SQL PLOT REFERENTIAL-STRUCTURES SEED selection PARENTS ;

where selection is defined as above.

No dependent relationships are traversed; therefore, no descendants of the seed are displayed. As a
consequence, the entire referential structure in which the seed appears may not be represented in
the plot. (If the specified seed is a root table or an independent table, then only the seed table will
be displayed.)

Syntax of the SQL PLOT REFERENTIAL-STRUCTURES Command

where:

number is a table number in the Workbench Design Area

name is a table name.

� �� SQL PLOT REFERENTIAL-STRUCTURES

ALL

SEED NUMBER name
NAME name

PARENTS
DEPENDENTS

;

.

�

�

���

ASG-Manager Products Relational Technology Support: SQL/DS

208

SQL POPULATE
Use the SQL POPULATE command to populate the dictionary with SQL-TABLE, SQL-INDEX,
and SQL-VIEW members, generated from the SQL design, and optionally to produce a report of
the generated members.

Refer to "Syntax of the SQL POPULATE Command" on page 217 for the syntax of the SQL
POPULATE command.

Introduction to the SQL POPULATE Command
The SQL POPULATE command generates dictionary member definitions and populates the
dictionary with them. A report of the generated member definitions is automatically output.

The SQL POPULATE command generates dictionary member definitions for one or more of the
following member types, from selected tables of the SQL design in the Workbench Design Area
(WBDA):

• SQL-TABLE

• SQL-INDEX

• SQL-VIEW.

Each time you issue the command, a SYSTEM member also can be generated and placed in the
dictionary, containing a list of all the SQL dictionary members generated by the command.

The command can be used only if the WBDA contains normalized data. If there is no data in the
WBDA, or if the data has not been normalized, the command is terminated and a message to that
effect is output.

The SQL POPULATE command will automatically generate the SQL design if one has not
already been generated. Any unnamed tables will be ignored by the command.

Although the content of a generated SQL dictionary member definition is only a subset of the
permissible content (which can be added later by a user if required), the generated definitions are
complete enough to be used subsequently to produce valid SQL CREATE TABLE, CREATE
INDEX, and CREATE VIEW statements. (When creating the SQL object, SQL/DS will assign
default values to all the remaining clauses.)

Each member definition is preceded by an ADD command and followed by a terminator.

SQL POPULATE automatically generates primary key keywords and foreign key clauses in
SQL-TABLE definitions to support referential integrity, unless you use the NO-RI option to
suppress them. In addition, the command enables you to assign SQL tables to specific dbspaces
(the DBSPACE option).

The command also allows you to associate a dictionary SQL-USER member (via the
CREATOR-OWNER clause) with the SQL dictionary members being defined.

9 Member Types and Commands

209

You must enter one (and only one) of the following keywords or clauses in the command to
indicate your selection of the SQL tables in the WBDA to be used in generating the dictionary
definitions:

• The ALL keyword to select all the tables in the WBDA

• The NAMES clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by WBDA number.

If you also enter the keyword ALPHABETICALLY, the definitions are generated (and displayed)
in alphanumeric order of table name.

The USING FORMAT option of this command is available only if you have the User Formatted
Output facility installed. It allows you to specify a defined FORMAT member of the dictionary to
control the format in which the member definitions are generated.

You can generate dictionary definitions for any or all of the member types in one command, but
you must specify them in the order in which the corresponding clauses appear in the command
syntax.

By prefixing SQL POPULATE with a NOPRINT command you can stop any output being
printed.

Refer to the ASG-ControlManager User’s Guide for details of the NOPRINT command.

Generating and Populating SQL-TABLE Members
Use the keyword TABLES to generate and populate the dictionary with SQL-TABLE members,
one for each selected table in the Workbench Design Area (WBDA). The name of the table in the
WBDA becomes the name of the generated SQL-TABLE dictionary member.

To populate the dictionary with SQL-TABLE members, enter:

SQL POPULATE TABLES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The command populates the dictionary with SQL-TABLE members which automatically contain
primary key keywords and foreign key clauses to support referential integrity (RI) unless the
keyword NO-RI also appears in the command.

ASG-Manager Products Relational Technology Support: SQL/DS

210

The following clauses are generated for each SQL-TABLE member:

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• The COLUMNS CONTAINS clause of the SQL-TABLE member holds an entry for each
column in the table. Column entries are separated by commas. Each entry includes the name
of the column and, if the column is part of the primary key (that is, a prime column), the
entry also includes the keyword NOT-NULL. The keyword PRIMARY-KEY is also
included for each prime column unless NO-RI is specified in the command.

• If the table contains any foreign keys and NO-RI has not been specified, a CONSTRAINT
clause is generated for each relationship in which the table participates as a dependent table

• Each CONSTRAINT clause includes a FOREIGN-KEY clause with one or more entries,
separated by commas, one per column of the foreign key. Each entry contains the name of
the foreign key column and, if the foreign key relationship is of domain type, a MEMBER
subclause which identifies the corresponding prime column in the parent table.

• A REFERENCES clause giving the name of the parent table also appears in the generated
CONSTRAINT clause

• If specified in the SQL PREVIEW command, a CREATOR-OWNER clause is included
specifying a dictionary SQL-USER member as the creator or owner of the SQL table

• If specified in the SQL PREVIEW command, an IN IN dbspace-name clause is included,
specifying the name of a dictionary SQL-DBSPACE member.

Refer to "Generated SQL-TABLE Definition" on page 76 for an example of SQL-TABLE
definition syntax generated by the SQL POPULATE command.

Suppressing Support for Referential Integrity
To specify that the SQL-TABLE members must not contain clauses supporting referential
integrity (RI), enter:

SQL POPULATE TABLES NO-RI selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

This suppresses the PRIMARY-KEY keywords and foreign key CONSTRAINT clauses needed to
support RI.

Generating References to Dbspaces
To generate a reference to a SQL-DBSPACE dictionary member in each generated SQL-TABLE
dictionary definition, enter:

SQL POPULATE TABLES DBSPACES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

9 Member Types and Commands

211

The name of the SQL-DBSPACE member is constructed from the name of the table concatenated
with the suffix '-DBSP', unless you specify an alternative name or an alternative suffix (or prefix)
in the command.

To specify a particular name which will appear in every SQL-TABLE member defined, enter:

SQL POPULATE TABLES DBSPACES NAME name selection ;

where name is a valid dictionary member name and selection is defined as above.

To specify a prefix or suffix to be concatenated with the table name, enter:

SQL POPULATE TABLES DBSPACES PREFIX 'string' selection ;

or

SQL POPULATE TABLES DBSPACES SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

Generating and Populating SQL-INDEX Members
To populate the dictionary with a SQL-INDEX member representing a primary index for each
selected table, enter:

SQL POPULATE INDEXES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The name of the SQL-INDEX member is constructed from the name of the table concatenated
with the suffix '-IND', unless you specify an alternative suffix (or prefix) in the command.

To construct the SQL-INDEX name from the name of the table concatenated with a specified
prefix or suffix, enter:

SQL POPULATE INDEXES PREFIX 'string' selection ;

or

SQL POPULATE INDEXES SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

ASG-Manager Products Relational Technology Support: SQL/DS

212

The following clauses are generated for each SQL-INDEX member:

• The CONTAINS clause of the SQL-INDEX definition holds an entry for each column in the
primary key of the selected table

• The UNIQUE keyword is included, followed by an ON clause containing the name of the
selected table. This indicates that the SQL-INDEX member represents a unique member.

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• If specified in the SQL POPULATE command, a CREATOR-OWNER clause is also
included which names a dictionary SQL-USER member as the creator or owner of the SQL

Refer to "Generated SQL-INDEX Definition" on page 77 for the syntax of a SQL-INDEX
definition generated by the SQL POPULATE command.

Generating and Populating SQL-VIEW Members
To populate the dictionary with a SQL-VIEW member for each selected table, enter:

SQL POPULATE VIEWS selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The SQL-VIEW member name is constructed from the name of the table concatenated with the
suffix '-VIEW', unless you specify an alternative suffix (or prefix) in the command.

To construct the SQL-VIEW name from the name of the table concatenated with a specified prefix
or suffix, enter:

SQL POPULATE VIEWS PREFIX 'string' selection ;

or

SQL POPULATE VIEWS SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

9 Member Types and Commands

213

The following clauses are generated for each SQL-VIEW member definition:

• The CONTAINS clause of the SQL-VIEW definition holds an entry for each column of the
selected table

• The FROM clause contains a reference to the selected table

• The keywords SELECT ALL are included in the definition. They appear between the
CONTAINS clause and the FROM clause and ensure that the SELECT ALL option will be
included in the subselect clause of the SQL CREATE VIEW statement produced
subsequently from the SQL-VIEW member.

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• If specified in the SQL PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary SQL-USER member as the creator or owner of the SQL
view.

Refer to "Generated SQL-VIEW Definition" on page 78 for the syntax of a SQL-VIEW definition
generated by the SQL POPULATE command.

Generating References to a SQL User
To specify that a selection of members generated from the Workbench Design Area (WBDA)
belongs to a particular SQL-USER member, enter:

SQL POPULATE member-type-selection CREATOR-OWNER sql-user
selection ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

sql-user is the name of a dictionary SQL-USER member

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

This causes a CREATOR-OWNER clause to be added to the generated dictionary members. If the
SQL-USER member does not exist already in the dictionary, then a dummy member with that
name is set up.

Generating and Populating a SYSTEM Member
To populate the dictionary with a SYSTEM member containing the names of all the SQL members
generated by this command, enter:

SQL POPULATE member-type-selection AS-SYSTEM system-name
selection ;

ASG-Manager Products Relational Technology Support: SQL/DS

214

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

system-name is the name of the generated SYSTEM dictionary member

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The generated SYSTEM definition then is automatically added to the dictionary. The CONTAINS
clause holds the names of all the dictionary members generated by the SQL POPULATE
command.

Refer to "Example of Generated SYSTEM Dictionary Member" on page 80 for the syntax of the
SYSTEM member generated by the SQL POPULATE command.

Selecting Tables in the Workbench Design Area
When issuing the SQL POPULATE command, you must specify which tables in the Workbench
Design Area (WBDA) you want to use to generate dictionary definitions.

To specify all the tables in the WBDA, enter:

SQL POPULATE member-type-selection ALL ;

where member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

The tables are selected in ascending order of their WBDA numbers unless ALPHABETICALLY
also appears in the command.

To specify the tables by name, enter:

SQL POPULATE member-type-selection NAME name-list ;

where:

member-type-selection is defined as above

name-list is a list of one or more valid names of tables present in the WBDA.
Consecutive names must be separated by commas. The tables are selected in the order in
which their names appear in name-list unless ALPHABETICALLY is also specified.

To specify the tables by WBDA number, enter:

SQL POPULATE member-type-selection NUMBERS range-list ;

where:

member-type-selection is defined as above

9 Member Types and Commands

215

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA numbers and n, if it appears, is greater than m. Every table
is selected whose WBDA number appears in the list or falls within a range appearing in the
list. Definitions are generated and reported in the order listed unless the keyword
ALPHABETICALLY is also specified in the command.

To specify that the tables are to be selected in alphanumeric order of table name, enter:

SQL POPULATE member-type-selection ALPHABETICALLY ;

where:

member-type-selection is defined as above

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

Tailoring Generated Definitions
To generate and populate SQL dictionary definitions in a format tailored to your requirements,
enter:

SQL POPULATE member-type-selection USING FORMAT format-member ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated

format-member is the name of a dictionary FORMAT member.

This outputs the dictionary definitions according to the specifications in the FORMAT member.

Use the USING FORMAT option to:

• Generate SQL dictionary definitions compatible with any User Defined Syntax structure
you may have implemented

• Generate dictionary member names to conform to your own naming standards

• Generate dictionary definitions preceded by the REPLACE or INSERT command, instead
of the default ADD command.

TO n
m ��

ASG-Manager Products Relational Technology Support: SQL/DS

216

Combining SQL POPULATE Command Options
You can generate and populate the dictionary with SQL member definitions for any combination
of the SQL-TABLE, SQL-INDEX, and SQL-VIEW member types in one SQL POPULATE
command, and optionally specify any or all of the CREATOR-OWNER, AS-SYSTEM, and
USING-FORMAT clauses at the same time.

In addition to populating the dictionary with the generated member definitions, the SQL
POPULATE command provides a printout of the definitions.

If you want to generate definitions for more than one member type, you must specify the member
type clauses in the command in the following order:

• TABLES clause

• INDEXES clause

• VIEWS clause.

You must also include one of the ALL, NAMES, or NUMBERS clauses in the command, to select
the tables in the Workbench Design Area from which to generate the SQL member definitions.

Examples of the SQL POPULATE Command
This section shows examples of the combinations of options available in the SQL POPULATE
command.

To generate and populate a SQL-TABLE member:

• For a table named DEPARTMENT,

• With no clauses for referential integrity (RI), and

• Belonging to a system called SQL-SYSTEM-TEST,

enter:

SQL POPULATE TABLES NO-RI AS-SYSTEM SQL-SYSTEM-TEST NAMES
DEPARTMENT ;

To generate and populate SQL-TABLE and SQL-INDEX members:

• For all the tables in the WBDA,

• Including clauses to support RI,

• Constructing each SQL-INDEX name from the table name concatenated with the suffix
'TEST', and

• Specifying that the selected tables are to be processed in alphanumeric order of table name,

enter:

SQL POPULATE TABLES INDEXES SUFFIX 'TEST' ALL ALPHABETICALLY ;

9 Member Types and Commands

217

To generate and populate SQL-INDEX and SQL-VIEW members:

• For tables in the WBDA selected by WBDA number,

• With each SQL-INDEX definition name constructed from the table name concatenated with
the default suffix '-IND',

• Constructing each SQL-VIEW definition name from the table name concatenated with the
prefix 'TEST', and

• Specifying that all the generated SQL-INDEX and SQL-VIEW definitions must reference a
SQL-USER member named USER1,

enter:

SQL POPULATE INDEXES VIEWS PREFIX 'TEST' CREATOR-OWNER
USERl NUMBERS 1 To 3, 5 ;

To generate and populate SQL-TABLE and SQL-VIEW members:

• For all tables in the WBDA,

• Suppressing clauses to support RI,

• Specifying that all the generated SQL-TABLE members must reference a SQL-DBSPACE
member named DEP-DBSP, and

• Formatting the output according to a format definition named FMT-REPL,

enter:

SQL POPULATE TABLES NO-RI DBSPACES NAME DEP-DBSP VIEWS ALL
USING FORMAT FMT-REPL ;

Syntax of the SQL POPULATE Command

where tables-clause is:

� �� SQL POPULATE

tables-clause

tables-clause

tables-clause indexes-clause

indexes-clause

views-clause

� �

CREATOR-OWNER sql-user AS-SYSTEM system-name
� �

ALL

NAMES name-list
NUMBERS range-list

ALPHABETICALLY

� �

� �

USING FORMAT format member .

;

�

NO-RI
NAME name
PREFIX 'string'
SUFFIX 'string'

DBSPACES

�� TABLES

ASG-Manager Products Relational Technology Support: SQL/DS

218

where:

name is an alphanumeric string of up to 32 characters which should conform to the rules for
a valid Manager Products dictionary member name

string is an alphanumeric string of up to 31 characters which should conform to the rules
for a valid Manager Products dictionary member name.

indexes-clause is:

where string is defined as above.

views-clause is:

where string is defined as above.

sql-user is an alphanumeric string of up to 32 characters, which should conform to the rules for
a valid Manager Products dictionary member name

system-name is an alphanumeric string of up to 32 characters, which should conform to the
rules for a valid Manager Products dictionary member name

name-list is a list of validly named tables in the WBDA. If there are two or more names in the
list they must be separated by commas.

range-list is a list of one or more numeric ranges, separated by commas, each of the form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid format member.

SQL PREVIEW
Use the SQL PREVIEW command to generate and report dictionarybout SQL/DS member
definitions from SQL tables, indexes, and views in the SQL design.

Refer to "Syntax of the SQL PREVIEW Command" on page 228 for the syntax of the SQL
PREVIEW command.

PREFIX 'string'
SUFFIX 'string'

�� INDEXES

PREFIX 'string'
SUFFIX 'string'

�� VIEWS

TO n
m ��

9 Member Types and Commands

219

Introduction to the SQL PREVIEW Command
The SQL PREVIEW command generates dictionary member definitions for one or more of the
following member types, from selected tables of the SQL design in the Workbench Design Area
(WBDA):

• SQL-TABLE

• SQL-INDEX

• SQL-VIEW.

Each time you issue the command, a SYSTEM member also can be generated, containing a list of
all the SQL dictionary members generated by the command.

The command can be used only if the WBDA contains normalized data. If there is no data in the
WBDA, or if the data has not been normalized, the command is terminated and a message to that
effect is output.

The SQL PREVIEW command will automatically generate the SQL design if one has not already
been generated. Any unnamed tables will be ignored by the command.

The generated definitions are not added to the dictionary, but are displayed so that you can check
that they meet your database requirements. Each definition is preceded by an ADD command and
followed by a terminator.

Once you are satisfied with the generated definitions, they can be added to the dictionary using the
SQL POPULATE command.

Although the content of a generated SQL dictionary member definition is only a subset of the
permissible content (which can be added later by a user if required), the generated definitions are
complete enough to be used subsequently to produce valid SQL CREATE TABLE, CREATE
INDEX, and CREATE VIEW statements. (When creating the SQL object, SQL/DS will assign
default values to all the remaining clauses.)

Each member definition is preceded by an ADD command and followed by a terminator.

SQL PREVIEW automatically generates primary key keywords and foreign key clauses in
SQL-TABLE definitions to support referential integrity, unless you use the NO-RI option to
suppress them. In addition, the command enables you to assign SQL tables to specific dbspaces
(the DBSPACE option).

The command also allows you to associate a dictionary SQL-USER member (via the
CREATOR-OWNER clause) with the SQL dictionary members being defined.

You must enter one (and only one) of the following keywords or clauses in the command to
indicate your selection of the SQL tables in the WBDA to be used in generating the dictionary
definitions:

• The ALL keyword to select all the tables in the WBDA

• The NAMES clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by WBDA number.

ASG-Manager Products Relational Technology Support: SQL/DS

220

If you also enter the keyword ALPHABETICALLY, the definitions are generated (and displayed)
in alphanumeric order of table name.

The USING FORMAT clause allows you to specify a defined dictionary FORMAT member of the
dictionary to control the format in which the definitions are generated. It is available only if you
have the User Formatted Output facility installed.

You can generate dictionary definitions for any or all of the member types in one command, but
you must specify them in the order in which the corresponding clauses appear in the command
syntax.

Generating and Previewing SQL-TABLE Definitions
Use the keyword TABLES to generate and preview a SQL-TABLE dictionary definition for each
selected table in the Workbench Design Area (WBDA). The name of the table in the WBDA
becomes the name of the generated SQL-TABLE member.

To generate and preview SQL-TABLE definitions, enter:

SQL PREVIEW TABLES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The command generates a SQL-TABLE definition for each selected table. The definition
automatically contains PRIMARY-KEY keywords and foreign key CONSTRAINT clauses to
support referential integrity (RI) unless you also specify the keyword NO-RI in the command to
indicate that they are to be suppressed.

9 Member Types and Commands

221

The following clauses are generated for each SQL-TABLE member:

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• The COLUMNS CONTAINS clause of the SQL-TABLE member holds an entry for each
column in the table. Column entries are separated by commas. Each entry includes the name
of the column and, if the column is part of the primary key (that is, a prime column), the
entry also includes the keyword NOT-NULL. The keyword PRIMARY-KEY is also
included for each prime column unless NO-RI is specified in the command.

• If the table contains any foreign keys and NO-RI has not been specified, a CONSTRAINT
clause is generated for each relationship in which the table participates as a dependent table

• Each CONSTRAINT clause includes a FOREIGN-KEY clause with one or more entries,
separated by commas, one per column of the foreign key. Each entry contains the name of
the foreign key column and, if the foreign key relationship is of domain type, a MEMBER
subclause which identifies the corresponding prime column in the parent table.

• A REFERENCES clause giving the name of the parent table also appears in the generated
CONSTRAINT clause

• If specified in the SQL PREVIEW command, a CREATOR-OWNER clause is included
specifying a dictionary SQL-USER member as the creator or owner of the SQL table

• If specified in the SQL PREVIEW command, an IN dbspace-name clause is included,
specifying the name of a dictionary SQL-DBSPACE member.

Refer to "Generated SQL-TABLE Definition" on page 76 for the syntax used for a dictionary
SQL-TABLE definition generated by the SQL PREVIEW command.

Suppressing Support for Referential Integrity
To specify that the SQL-TABLE definitions must not contain clauses supporting referential
integrity (RI), enter:

SQL PREVIEW TABLES NO-RI selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

This suppresses the PRIMARY-KEY keywords and foreign key CONSTRAINT clauses needed to
support RI.

Generating References to Dbspaces
To generate a reference to a SQL-DBSPACE dictionary member in each generated SQL-TABLE
dictionary definition, enter:

SQL PREVIEW TABLES DBSPACES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

ASG-Manager Products Relational Technology Support: SQL/DS

222

The name of the SQL-DBSPACE member is constructed from the name of the table concatenated
with the suffix '-DBSP', unless you specify an alternative name or an alternative suffix (or prefix)
in the command.

To specify a particular name which will appear in every SQL-TABLE member defined, enter:

SQL PREVIEW TABLES DBSPACES NAME name selection ;

where:

name is a valid dictionary member name

selection is defined as above.

To specify a prefix or suffix to be concatenated with the table name, enter:

SQL PREVIEW TABLES DBSPACES PREFIX 'string' selection ;

or

SQL PREVIEW TABLES DBSPACES SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

Generating and Previewing SQL-INDEX Definitions
To specify that you want a SQL-INDEX definition, representing a primary index, to be generated
for each selected table, enter:

SQL PREVIEW INDEXES selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The name of the SQL-INDEX member is constructed from the name of the table concatenated
with the suffix '-IND', unless you specify an alternative suffix (or prefix) in the command.

To construct the SQL-INDEX name from the name of the table concatenated with a specified
prefix or suffix, enter:

SQL PREVIEW INDEXES PREFIX 'string' selection ;

or

SQL PREVIEW INDEXES SUFFIX 'string' selection ;

9 Member Types and Commands

223

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

The following clauses are generated for each SQL-INDEX definition:

• The CONTAINS clause of the SQL-INDEX definition holds an entry for each column in the
primary key of the selected table

• The UNIQUE keyword is included, followed by an ON clause containing the name of the
selected table. This indicates that the SQL-INDEX member represents a unique member.

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• If specified in the SQL PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary SQL-USER member as the creator or owner of the SQL
index.

Refer to "Generated SQL-INDEX Definition" on page 77 for the syntax of a SQL-INDEX
definition generated by the SQL PREVIEW command.

Generating and Previewing SQL-VIEW Definitions
To specify that you want a SQL-VIEW definition to be generated for each selected table, enter;

SQL PREVIEW VIEWS selection ;

where selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The name of the SQL-VIEW definition is constructed from the name of the table concatenated
with the suffix '-VIEW', unless you specify an alternative suffix (or prefix) in the command.

To construct the SQL-VIEW definition’s name from the table name concatenated with a specified
prefix or suffix, enter:

SQL PREVIEW VIEWS PREFIX 'string' selection ;

or

SQL PREVIEW VIEWS SUFFIX 'string' selection ;

where:

string is a valid dictionary string of up to 31 characters

selection is defined as above.

ASG-Manager Products Relational Technology Support: SQL/DS

224

The following clauses are generated for each SQL-VIEW definition:

• The CONTAINS clause of the SQL-VIEW definition holds an entry for each column in the
selected table

• The FROM clause contains a reference to the selected table

• The keywords SELECT ALL are included in the definition. They appear between the
CONTAINS clause and the FROM clause and ensure that the SELECT ALL option will be
included in the subselect clause of the SQL CREATE VIEW statement produced
subsequently from the SQL-VIEW member.

• For each data-view which is the origin of a WBDA dependency represented by the table, the
SEE clause contains a separate data-view FOR 'SOURCE' sub-clause

• If specified in the SQL PREVIEW command, a CREATOR-OWNER clause is also
included which names a dictionary SQL-USER member as the creator or owner of the SQL
view.

Refer to "Generated SQL-VIEW Definition" on page 78 for the syntax of a SQL-VIEW definition
generated by the SQL PREVIEW command.

Generating References to a SQL User
To specify that a selection of members generated from the Workbench Design Area (WBDA)
belongs to a particular SQL-USER member, enter:

SQL PREVIEW member-type-selection CREATOR-OWNER sql-user
selection ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

sql-user is the name of a dictionary SQL-USER member

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

This causes a CREATOR-OWNER clause to be added to the generated SQL dictionary
definitions. If the SQL-USER member does not exist already in the dictionary, then a dummy
member is set up for that name.

Generating and Previewing a SYSTEM Definition
To generate and preview a SYSTEM definition containing the names of all the SQL definitions
generated by this command, enter:

SQL PREVIEW member-type-selection AS-SYSTEM system-name selection ;

9 Member Types and Commands

225

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

system-name is the name of the generated SYSTEM dictionary definition

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

The CONTAINS clause in the generated SYSTEM definition holds the names of all the dictionary
member definitions generated by this SQL PREVIEW command.

Refer to Relational Technology Support: SQL/DS manual 3.4.4.1 for the syntax of the SYSTEM
definition generated by the SQL PREVIEW command.

Selecting Tables in the Workbench Design Area
When issuing the SQL PREVIEW command, you must specify the tables in the Workbench
Design Area (WBDA) from which you want to generate dictionary definitions for previewing.

To specify all the tables in the WBDA, enter:

SQL PREVIEW member-type-selection ALL ;

where member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses.

The tables are selected in ascending order of their WBDA numbers unless ALPHABETICALLY
also appears in the command.

To specify the tables by name, enter:

SQL PREVIEW member-type-selection NAMES name-list ;

where:

member-type-selection is defined as above

name-list is a list of one or more valid names of tables present in the WBDA.
Consecutive names must be separated by commas. The tables are selected in the order in
which their names appear in name-list unless ALPHABETICALLY is also specified.

To specify the tables by WBDA number, enter:

SQL PREVIEW member-type-selection NUMBERS range-list ;

where:

member-type-selection is defined as above

ASG-Manager Products Relational Technology Support: SQL/DS

226

range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA numbers and n, if it appears, is greater than m. Every table
is selected whose WBDA number appears in the list or falls within a range appearing in the
list. Definitions are generated and reported in the order listed unless the keyword
ALPHABETICALLY is also specified in the command.

To specify that the tables are to be selected in alphanumeric order of table name, enter:

SQL PREVIEW member-type-selection selection ALPHABETICALLY ;

where:

member-type-selection is defined as above

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated.

Tailoring Generated Dictionary Definitions
To generate and preview SQL dictionary definitions in a format tailored to your requirements,
enter:

SQL PREVIEW member-type-selection selection USING FORMAT
format-member ;

where:

member-type-selection is one or more of the TABLES, INDEXES, and VIEWS
clauses

selection is one of the ALL, NAMES, or NUMBERS options used to identify the tables
from which dictionary definitions are to be generated

format-member is the name of a dictionary FORMAT member.

This outputs the dictionary definitions according to the specifications in the FORMAT member.

Use the USING FORMAT option to:

• Generate SQL dictionary definitions compatible with any User Defined Syntax structure
you may have implemented

• Generate dictionary member names to conform to your own naming standards

• Generate dictionary definitions preceded by the REPLACE or INSERT command, instead
of the default ADD command.

TO n
m ��

9 Member Types and Commands

227

Combining SQL PREVIEW Command Options
You can generate dictionary definitions for any combination of the SQL-TABLE, SQL-INDEX,
and SQL-VIEW member types in one SQL PREVIEW command, and optionally specify any or all
of the CREATOR-OWNER, AS-SYSTEM, and USING-FORMAT clauses at the same time.

If you want to generate definitions for more than one member type, you must specify the member
type clauses in the command in the following order:

• TABLES

• INDEXES clause

• VIEWS clause.

You must also include one of the ALL, NAMES, or NUMBERS clauses in the command, to select
the tables in the Workbench Design Area from which to generate the SQL member definitions.

Examples of the SQL PREVIEW Command
This panel shows examples of the combinations of options available in the SQL PREVIEW
command.

To generate and preview a SQL-TABLE definition:

• For a Workbench Design Area (WBDA) table named DEPARTMENT,

• With no clauses for referential integrity (RI), and

• Belonging to a system called SQL-SYSTEM-TEST,

enter:

SQL PREVIEW TABLES NO-RI AS-SYSTEM SQL-SYSTEM-TEST NAMES
DEPARTMENT ;

To generate and preview SQL-TABLE and SQL-INDEX definitions:

• For all the tables in the WBDA,

• Including clauses to support RI,

• Constructing each SQL-INDEX name from the table name concatenated with the suffix
'TEST', and

• Specifying that the selected tables are to be processed in alphanumeric order of table name,

enter:

SQL PREVIEW TABLES INDEXES SUFFIX 'TEST' ALL ALPHABETICALLY ;

ASG-Manager Products Relational Technology Support: SQL/DS

228

To generate and preview SQL-INDEX and SQL-VIEW definitions:

• For tables in the WBDA selected by WBDA number,

• With each SQL-INDEX definition name constructed from the table name concatenated with
the default suffix '-IND',

• Constructing each SQL-VIEW definition name from the table name concatenated with the
prefix 'TEST', and

• Specifying that all the generated SQL-INDEX and SQL-VIEW definitions must reference a
SQL-USER member named USERl,

enter:

SQL PREVIEW INDEXES VIEWS PREFIX 'TEST' CREATOR-OWNER USER1
NUMBERS 1 TO 3, 5 ;

To generate and preview SQL-TABLE and SQL-VIEW definitions:

• For all tables in the WBDA,

• Suppressing clauses to support RI,

• Specifying that all the generated SQL-TABLE definitions must reference a
SQL-DBSPACE definition named DEP-DBSP, and

• Formatting the output according to a format definition named FMT-REPL,

enter:

SQL PREVIEW TABLES NO-RI DBSPACES NAME DEP-DBSP VIEWS ALL USING
FORMAT FMT-REPL ;

Syntax of the SQL PREVIEW Command

where tables-clause is:

� �� SQL PREVIEW

tables-clause

tables-clause

tables-clause indexes-clause

indexes-clause

views-clause

� �

CREATOR-OWNER sql-user AS-SYSTEM system-name
� �

ALL

NAMES name-list
NUMBERS range-list

ALPHABETICALLY

� �

� �

USING FORMAT format member .

;

�

NO-RI
NAME name
PREFIX 'string'
SUFFIX 'string'

DBSPACES

�� TABLES

9 Member Types and Commands

229

where:

name is an alphanumeric string of up to 32 characters which should conform to the rules for
a valid Manager Products dictionary member name

string is an alphanumeric string of up to 31 characters which should conform to the rules
for a valid Manager Products dictionary member name.

indexes-clause is:

where string is defined as above.

views-clause is:

where string is defined as above.

sql-user is an alphanumeric string of up to 32 characters, which should conform to the rules for
a valid Manager Products dictionary member name

system-name is an alphanumeric string of up to 32 characters, which should conform to the
rules for a valid Manager Products dictionary member name

name-list is a list of validly named tables in the WBDA. If there are two or more names in the
list they must be separated by commas.

range-list is a list of one or more numeric ranges, separated by commas, each of the form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid format member.

SQL-PRIVILEGE
SQL privileges are defined in the dictionary as SQL-PRIVILEGE members.

Refer to "Syntax of the SQL-PRIVILEGE Member Type" on page 235 for the syntax of the
SQL-PRIVILEGE member type.

Introduction to SQL-PRIVILEGE
To document an SQL/DS privilege in the dictionary use the SQL-PRIVILEGE member type. To
define the dictionary member type enter SQL-PRIVILEGE at the start of your member definition
statement.

PREFIX 'string'
SUFFIX 'string'

�� INDEXES

PREFIX 'string'
SUFFIX 'string'

�� VIEWS

TO n
m ��

ASG-Manager Products Relational Technology Support: SQL/DS

230

In the SQL/DS environment you can grant privileges to specific users to allow them to access
particular tables, views, and programs. You can also grant system authorities to users (in a
SYSTEM privilege).

You can record all of these types of privilege in the dictionary as members of the type
SQL-PRIVILEGE, the distinction between them being made by an appropriate keyword in the
data definition. You may record only one type of privilege in one member.

Table and view privileges give specified users access to particular SQL/DS objects. For example,
an UPDATE privilege on a table gives a user the ability to perform UPDATES on a particular,
named, table (defined in the ON clause).

Program privileges allow specified users to run particular programs, and system authority
privileges allow you to grant specified users different levels of administrative authority over the
SQL/DS environment.

You can record the grantors and recipients of privileges (in GRANTOR and TO clauses
respectively).

Table, view, and program privileges can be granted with or without the GRANT option (by
including or excluding the WITH-GRANT-OPTION keyword). A privilege with a GRANT option
is transferable, that is, the recipient may pass on the privilege to another user.

Clauses may be declared in any order.

The privilege-type clause and the TO clause must be present for the successful generation of an
SQL GRANT statement.

The definitions recorded in the dictionary are used to generate SQL GRANT and SQL REVOKE
statements. They can also be interrogated using dictionary interrogation commands to provide
database administrators with the ability to analyze the dictionary model of the SQL/DS security
system.

When you generate an SQL REVOKE statement from an SQL-PRIVILEGE member, you must
consider carefully whether to remove the member from the dictionary. You may need to grant the
privilege again, in which case you should retain the member in the dictionary. If you do this, the
privileges documented in the dictionary will reflect your long-term security arrangements and can
be used whenever necessary to GRANT and REVOKE SQL privileges.

The AS Clause
Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

Defining the Grantor of an SQL/DS Privilege
Use a GRANTOR clause to define the user who is granting the privilege. The syntax of the clause
is as follows:

GRANTOR sql-user� �

9 Member Types and Commands

231

where sql-user is the name of a dictionary member of the type SQL-USER, which represents
the Authorization ID of the user who is granting the privilege. (Typically, the grantor will be a
database administrator for a project.) The clause is checked on encoding to ensure that the member
specified is of the correct type. This clause is used for documentation purposes only; it is optional
and does not affect the generation of an SQL GRANT statement.

Defining Specific Privileges on Tables and Views
Use the keyword TABLE to grant privileges on tables and views. The syntax is as follows:

contains is:

single-column clause is:

The keywords are the same as those used by SQL/DS and they have the same meanings. Use the
CONTAINS clause to define the column or columns which the UPDATE privilege applies to. The
column(s) thus specified must be defined in the same way as they are in the corresponding clauses
of the SQL-TABLE or SQL-VIEW member, which represents the SQL/DS object to which the
privilege applies, and they must conform to the same requirements.

where sql-table-name and sql-view-name are dictionary members of the appropriate
type, which represent the object(s) on which the privilege operates.

The clause is checked on encoding to ensure that the privilege specified is a valid one.

Defining ALL Privileges on Tables and Views
Use the keyword ALL to grant all possible privileges a user may have an a table or view. The
syntax is as follows:

where sql-table-name and sql-view-name are dictionary members of the appropriate
type, which represent the object(s) on which the privilege operates.

ALTER

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE
CONTAINS contains

� �
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

SQL-PRIVILEGE - TABLE

<< , <<<

ON sql-table-name

sql-view-name

<<<<<<<< , <<<<<<<<<� �

(integer)
single-column-clause

group-name EXPAND
� �

group-name

� �item-name

KNOWN-AS local-name

� �SQL-PRIVILEGE - ALL

ON sql-table-name

sql-view-name

<<<<<<<< , <<<<<<<<<� �

ASG-Manager Products Relational Technology Support: SQL/DS

232

Defining SQL/DS PROGRAM Privileges
Use the PROGRAM ON clause to grant program privileges. The syntax is as follows:

where program-name is the name of the PROGRAM which the recipient of the privilege is
permitted to run. The PROGRAM must be a dictionary member and it must have a valid
CREATOR-OWNER clause. The SQL-USER specified in the CREATOR-OWNER clause is the
original grantor of this PROGRAM privilege.

The clause is checked on encoding to ensure that the privilege specified is a valid one.

Defining the Recipient of SQL/DS Privileges on Tables, Views, and Programs
Use a TO clause to define the user to whom a privilege on a table, view, or program is being
granted. The syntax is as follows:

where sql-user-name is the name of a member of the type SQL-USER, which represents the
Authorization ID of the user to whom the privilege is being granted. The clause is checked on
encoding to ensure that the member specified is of the correct type.

Use the optional WITH-GRANT-OPTION keyword to specify that the recipient(s) of the privilege
may transfer it to another user.

This clause must be present for the successful generation of an SQL statement.

Defining SQL/DS SYSTEM Privileges and their Recipients
Use the SYSTEM clause to grant system privileges. The syntax is as follows:

where:

sql-user-name is the name of a dictionary member of the typo SQL-USER, which
represents the Authorization ID of the user who is being granted the privilege specified. The
clause is checked on encoding to ensure that the member specified is of the correct type.

subsystem-id is the ID of the CICS subsystem running under the VSE guest

� �SQL-PRIVILEGE - PROGRAM ON program-name�
<<<<<<< , <<<<

� �TO sql-user-name

WITH-GRANT-OPTION

<<<<< , <<<<<<

SYSTEM CONNECT

RESOURCE

DBA

SCHEDULE subsystem-id

� �
<<<< , <<<<

TO sql-user-name

IDENTIFIED-BY password
� �<<< , <<

9 Member Types and Commands

233

password is a password associated with the SQL/DS user specified, and every user must
have an associated password. The subsystem-id may have only one associated password.
The password may consist of no more than eight characters; this is checked on encoding.
The IDENTIFIED-BY clause may be included if you need to change a password, or specify
a new one. The clause must be present for successful generation when a privilege is being
granted to a subsystem-id.

Examples of SQL-PRIVILEGE Definitions and SQL Generation

Example 1: SQL-PRIVILEGE TABLE Definition and SQL Generation

Figure 38 SQL-PRIVILEGE TABLE Definition and SQL Generation

1. The type of privilege being granted is taken directly from the data definition statement.

2. The SQL/DS name for the table on which the privilege is being granted is derived from the
dictionary name of the SQL-TABLE member specified in the dictionary definition,
qualified by the CREATOR-OWNER of the table, as specified in the SQL-TABLE member
definition.

3. The SQL/DS name of the user to whom the privilege is being granted is taken directly from
the dictionary definition.

4. The WITH GRANT OPTION is taken directly from the dictionary definition.

Dictionary Definition: Generated SQL Syntax:

ADD EMP-TABLE-INSERT;

SQL-PRIVILEGE

GRANTOR PERS1

TABLE INSERT

ON EMP-TABLE

TO PERS2

WITH-GRANT-OPTION

;

GRANT INSERT

ON PERS1.EMP_TABLE

TO PERS2

WITH GRANT OPTION

;

1
2
3
4

ASG-Manager Products Relational Technology Support: SQL/DS

234

Example 2: SQL-PRIVILEGE PROGRAM Definition and SQL Generation

Figure 39 SQL-PRIVILEGE PROGRAM Definition and SQL Generation

1. The type of privilege being granted is taken directly from the member definition statement.
The SQL/DS name of the program on which RUN privileges are being granted is the
dictionary name of the program, qualified by the CREATOR-OWNER of the program.

2. The SQL/DS name of the user to whom the privilege is being granted is derived from the
SQL ALIAS of the dictionary member, SQLU-PRODUCTION-DBAl, which represents the
user.

3. The WITH GRANT OPTION is taken directly from the member definition.

Example 3: SQL-PRIVILEGE SYSTEM Definition and SQL Generation

Figure 40 SQL-PRIVILEGE SYSTEM Definition and SQL Generation

1. The type of privilege being granted is taken directly from the member definition statement.

2. The Authorization ID of the recipient of the privilege is taken directly from the member
definition statement.

3. The password associated with the Authorization ID is taken directly from the member
definition statement.

Dictionary Definition: Generated SQL Syntax:

ADD SQL-PRIV-EMP-P-1

SQL-PRIVILEGE

GRANTOR PERS1

PROGRAM ON EMP-P-1

TO SQLU-PRODUCTION-DBA1

WITH-GRANT-OPTION

;

GRANT RUN ON PERS1.EMP_P_11
2
3

TO AA_USER1

WITH GRANT OPTION

;

Dictionary Definition: Generated SQL Syntax:

ADD PERS-DBA

SQL-PRIVILEGE

GRANTOR SQLU-PRODUCTION-DBA1

SYSTEM DBA

TO PERS1

 IDENTIFIED-BY JONES

;

GRANT DBA1
2
3

 TO PERS1

 IDENTIFIED BY JONES

;

9 Member Types and Commands

235

Syntax of the SQL-PRIVILEGE Member Type

where:

referred-member is the name of an SQL-PRIVILEGE dictionary member

sql-user-name is the name of an SQL-USER dictionary member.

table-privileges:

contains-clause:

where:

sql-table-name is the name of an SQL-TABLE dictionary member

sql-view-name is the name of an SQL-VIEW dictionary member

sql-user-name is the name of an SQL-USER dictionary member

(integer) is the number of columns in a 'column set'

item-name is the name of an ITEM dictionary member

AS referred-member

� SQL-PRIVILEGE ��

GRANTOR sql-user-name
� �

table-privileges

program-privileges

system-privileges

common clauses
� �

� �

.

;

�

ALTER

DELETE

INDEX

INSERT

REFERENCES

SELECT

UPDATE
CONTAINS contains

� �
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

SQL-PRIVILEGE - TABLE

<< , <<<

ON sql-table-name

sql-view-name

<<<<<<<< , <<<<<<<<<� �

TO sql-user-name

WITH-GRANT-OPTION

<<<<< , <<<<<< ��

(integer)
single-column-clause

group-name EXPAND
� �

group-name

� �item-name

KNOWN-AS local-name

ASG-Manager Products Relational Technology Support: SQL/DS

236

group-name is the name of a GROUP dictionary member

local-name consists of no more than eighteen characters.

program-privilege:

where:

program-name is the name of a PROGRAM dictionary member

sql-user-name is the name of an SQL-USER dictionary member.

system-privileges:

where:

sql-user-name is the name of an SQL-USER dictionary member

subsystem-id is the name of the subsystem ID of the CICS subsystem

password is an SQL Authorization ID password, consisting of no more than eight
characters.

SQL PRODUCE
Use the SQL PRODUCE command to generate a host language data structure or a table layout
from the definition of an SQL-TABLE or SQL-VIEW member.

Refer to "Syntax of the SQL PRODUCE Command" on page 239 for the syntax of the SQL
PRODUCE command.

Introduction to the SQL PRODUCE Command
Use the SQL PRODUCE command to generate:

• A host language data structure, or

• A table layout

from the definition of a SQL-TABLE or SQL-VIEW member.

� �PROGRAM ON program-name

TO sql-user-name

WITH-GRANT-OPTION

<<<<< , <<<<<< ��

SYSTEM CONNECT

RESOURCE

DBA

SCHEDULE subsystem-id

� �
<<<< , <<<<

TO sql-user-name

IDENTIFIED-BY password
� �<<< , <<

9 Member Types and Commands

237

The output generated can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file the generated output in a USER-MEMBER you must specify an ONTO clause in the SQL
PRODUCE command.

Generating a Host Language Data Structure
To generate a host language data structure, enter:

SQL PRODUCE language FROM member-name ;

where:

language is ASSEMBLER (or ALC or BAL), PL1 (or PLI, PL/I or PL/1), or COBOL

member-name is an encoded SQL-TABLE or SQL-VIEW member.

Column variables in the host language data structure are generated from the definition of the
ITEMs or GROUPs specified in the CONTAINS clause of the SQL-TABLE or SQL-VIEW
member specified in the SQL PRODUCE command.

ASSEMBLER, PLl, or COBOL data types are generated for the column variables and correspond
to the SQL/DS data type of the columns in the table or view.

The Systems Administrator can tailor the output of the SQL PRODUCE command so that:

• Host language indicator structures are generated

• External names are derived from aliases

• Internal diagnostic output is displayed

• Character field lengths are compatible with your SQL/DS installation settings for time and
date.

The generated column and indicator structures can be referenced by application programs
containing imbedded SQL syntax for data manipulation statements.

Refer to "Generating Column Data Types" on page 96 for details of generating data types for
column variables.

Generating an SQL/DS Table Layout
Use the SQL PRODUCE command to generate a table layout from the definition of a
SQL-TABLE or SQL-VIEW member.

To generate a table layout, enter:

SQL PRODUCE TABLE-LAYOUT FROM member-name ;

ASG-Manager Products Relational Technology Support: SQL/DS

238

where member-name is an encoded SQL-TABLE or SQL-VIEW member.

A table layout displays the column structure of a table or view by listing the SQL-TABLE,
SQL-VIEW, GROUP, and ITEM members documenting the table or view, and its columns, in the
dictionary.

Information such as the SQL/DS data type and length of columns, as well as if any of them are
documented in the dictionary as being null or primary keys, is displayed in a convenient tabular
format.

The DESCRIPTION clause of each of the members listed in the table layout is also displayed.
DESCRIPTION clauses can contain 32767 delimited character strings and therefore enable you to
describe SQL/DS objects in greater detail than that possible in SQL/DS comments or labels.

By printing the table layouts you can produce paper documentation displaying the structure and
purpose of your tables and views.

The size of the table layouts you can generate is determined by the maximum number of lines of
output that can be printed in any output buffer. The Systems Administrator can specify the
maximum line limit with the SET OUTPUT-LINE-LIMIT command. Use the QUERY
OUTPUT-LINE-LIMIT command to find out the current line limit. The maximum line limit does
not restrict the size of table layouts generated by SQL PRODUCE commands entered in batch.

Refer to the ASG-Manager Products Dictionary/Repository User’s Guide for details of the
DESCRIPTION clause.

Refer to the ASG-Manager Products Systems Administrator’s Manual for details of the SET
OUTPUT-LINE-LIMIT command.

A Description of Table Layouts
A table layout lists and describes the members documenting the columns in a table or view and the
edit procedures, field procedures, and validation procedures of a DB2 table.

The entries under the heading PKEY specify whether a column is documented in the dictionary as
being a primary key. The column is a primary key if Y is specified and is not a primary key if there
is no entry.

The entries under the heading NULL specify whether a column is documented in the dictionary as
being null. The column is null if N is specified and is not null if there is no entry, or, not null with
default values if D is specified. D entries only apply to DB2 tables.

The entries under the heading NAME specify the names of the members documenting the table or
view and their columns and edit, field, and validation procedures.

The entries under the heading TYPE specify the DB2 or SQL/DS data type of a column, or,
identify an edit, field, or validation procedure. Data types are derived from the definitions of the
ITEM and GROUP members documenting the columns.

9 Member Types and Commands

239

The entries under the heading LENGTH specify the length of a column. The length is the
maximum length documented in an ITEM member’s definition, or for GROUP members, the total
length of the ITEM members it contains. The length of the table or view equals the total length of
all the ITEMs and GROUPs. If a member documents an edit, field, or validation procedure there is
no entry.

The entries under the heading REMARKS specify the text filed in the DESCRIPTION clause of
the members.

An Example of an SQL/DS Table Layout
The following is an example of a table layout generated from a SQL-TABLE member:

* *
* DESCRIPTION OF TB2-EMPLOYEE *
* *

PKEY NULL NAME TYPE LENGTH REMAR
TB2-EMPLOYEE SQL-TABLE 57

N IT-EMPNO CHAR (6) 6
IT-FIRSTNME VARCHAR (10) 13

Y N IT-MIDINIT CHAR (2) 2
N IT-LASTNAME VARCHAR (10) 12 Surname.

IT-WORKDEPT CHAR (3) 4
IT-PHONENO_1 CHAR (4) 5
IT-JOB CHAR (8) 9 Duties.
IT-SALARY DECIMAL (9,2) 6

Filing Generated Output in a USER-MEMBER
Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO,
PRIVATE, PUBLIC, NEW, APPEND, REPLACE, PRINT, and NOPRINT keywords.

Syntax of the SQL PRODUCE Command

where language is:

sql/ds-table-name is the name of a SQL-TABLE member

sql/ds-view-name is the name of a SQL-VIEW member.

TABLE-LAYOUT

� SQL �languagePRODUCE FROM�

sql/ds-view-name

� �sql/ds-table-name

destination .

;

�

ALC

ASSEMBLER

BAL

COBOL
PLI

PL1

PL/I
PL/1

� �

ASG-Manager Products Relational Technology Support: SQL/DS

240

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL REPORT
Use the SQL REPORT command to produce a SQL Table Report of all or some of the tables in the
SQL design.

Refer to "Syntax of the SQL REPORT Command" on page 242 for the syntax of the SQL
REPORT command.

Introduction to the SQL REPORT Command
Use the SQL REPORT command to produce a SQL Table Report of all or some of the tables in the
SQL design generated in the Workbench Design Area (WBDA).

You must enter one (and only one) of the following keywords or clauses in the command to
indicate your selection of the tables to be reported:

• The ALL keyword to select all the tables in the WBDA

• The NAME clause for a selection of tables by name

• The NUMBERS clause for a selection of tables by number.

If you also enter the keyword ALPHABETICALLY, the selected tables will be output
alphanumerically.

For each selected table in the WBDA, the report describes the dependencies represented by the
table and the other tables to which it is related.

The command can be used only if the WBDA contains normalized data. If there is no data in the
WBDA, or if it has not been normalized, you are informed and the command is terminated. If the
WBDA contains normalized data but no SQL design, the command causes the SQL design to be
generated and then produces the report.

The USING FORMAT option of this command is available only if you have the User Formatted
Output facility installed. It allows you to specify the name of a valid FORMAT member of the
dictionary in order to tailor the format in which the tables are output.

Reporting All the Tables in the Workbench Design Area
To report all the tables in the Workbench Design Area (WBDA), enter:

SQL REPORT TABLES ALL ;

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

9 Member Types and Commands

241

This outputs the tables in order of WBDA number.

To report all the tables alphanumerically, enter:

SQL REPORT TABLES ALL ALPHABETICALLY ;

This causes the named tables to be reported in alphanumeric order of table name, followed by any
unnamed tables in ascending order of WBDA number.

Reporting Tables Selected by Name
To report tables selected by name, enter:

SQL REPORT TABLES NAMES name-list ;

where name-list is a list of one or more valid names of tables present in the Workbench
Design Area (WBDA). Table names in name-list must be separated by commas.

Tables are reported in the order listed unless the keyword ALPHABETICALLY also is specified
in the command.

To report the tables in alphanumeric order of table name, enter:

SQL REPORT TABLES NAMES name-list ALPHABETICALLY ;

For example:

SQL REPORT TABLES NAMES DEPARTMENT, OFFICE, EMPLOYEE
ALPHABETICALLY ;

Reporting Tables Selected by Number
Tables in the Workbench Design Area (WBDA) which have not yet been named can be selected
only by number.

To report tables selected by their WBDA number, enter:

SQL REPORT TABLES NUMBERS range-list ;

where range-list is a list of one or more numeric ranges, separated by commas, each of the
form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m. Every
table is reported whose WBDA number appears in the list or falls within a range appearing
in the list. Tables are reported in the order listed unless the keyword ALPHABETICALLY
is also specified in the command.

To report the listed tables alphanumerically, enter:

SQL REPORT TABLES NUMBERS range-list ALPHABETICALLY ;

TO n
m ��

ASG-Manager Products Relational Technology Support: SQL/DS

242

This causes the named tables in range-list to be reported in alphanumeric order of table name,
followed by any unnamed tables in ascending order of WBDA number.

An example of this option is shown below:

SQL REPORT TABLES NUMBERS 1,4,6 TO 12,17 TO 20,25
ALPHABETICALLY ;

Reporting Tables in a Specific Format
To report tables in a format tailored to your requirements, enter:

SQL REPORT TABLES selection USING FORMAT format-member ;

where:

format-member is the name of a previously defined FORMAT member of the
dictionary. Tables are output according to the specifications in the FORMAT member.

selection is one of the following:

• ALL

• NAMES name-list

• NUMBERS range-list.

Syntax of the SQL REPORT Command

where name-list is a list of validly named tables in the WBDA. If there are two or more names
in the list they must be separated by commas

range-list is a list of one or more numeric ranges, separated by commas, each of the form:

where m and n are valid WBDA table numbers and n, if it appears, is greater than m.

format-member is the name of a previously defined, valid format member.

SQL REVOKE
Refer to "SQL GRANT and SQL REVOKE" on page 190 for details of the SQL REVOKE
command.

ALL

NAMES name-list
NUMBERS range-list

� �SQL REPORT TABLES�

ALPHABETICALLY

� �

� �

USING FORMAT format member .

;

�

TO n
m ��

9 Member Types and Commands

243

SQL SIZE
Use the SQL SIZE command to calculate the total size of a table and the maximum size of each
row contained in that table from the definition of a SQL-TABLE member.

Use
To calculate the total size of a table and the maximum size of each row contained in it, enter:

SQL SIZE member-name ;

where member-name is an encoded SQL-TABLE member.

Row sizes are calculated in bytes and the total size of a table in 4096-byte pages.

The ability to easily calculate row and table sizes makes it much easier to determine the number of
pages required for a dbspace, (as defined in the PAGES clause of SQL-DBSPACE members) and
plan for future data growth.

The size of a table is estimated by calculating the maximum size of each row in the table and the
number of rows the table contains.

The number of rows in the table is taken from the value specified in the CARDINALITY clause of
the SQL-TABLE member. If the SQL-TABLE member has no CARDINALITY clause then only
the maximum row size is calculated.

The size of a row is determined by the SQL/DS data type of the columns in the table. These are in
turn derived from the definition of the ITEMs and GROUPs specified in the COLUMNS clause of
the SQL-TABLE member.

The size of a physical row can vary in practice if it contains any variable length columns. The size
calculated by the SQL SIZE command uses maximum sizes for all variable columns and so
expresses the maximum size for the whole row.

For example, a column with a SQL/DS data type of VARCHAR 6 would be generated from an
ITEM with a form-description of CHARACTER 5 TO 6 and no USAGE clause. The SQL SIZE
command would calculate the size of the row taking into account the variable length and SQL/DS
data type of the column.

If the column can contain null values (that is the keyword NOT-NULL has not been specified in
the SQL-TABLE member’s definition) it is given an extra byte.

Note that for size calculations a column with a SQL/DS data type of DATE requires four bytes of
storage, a column with a SQL/DS data type of TIME three bytes of storage and a column with a
SQL/DS data type of TIMESTAMP ten bytes of storage.

The Systems Administrator can tailor the output of the SQL SIZE command so that internal
diagnostic output is displayed.

The output of the SQL SIZE command cannot be automatically filed in a USER-MEMBER on the
MP-AID.

ASG-Manager Products Relational Technology Support: SQL/DS

244

Refer to "Generating Column Data Types" on page 96 for details of generating column data types.

Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailoring.

Syntax of the SQL SIZE Command

where sql/ds-table-name is the name of a SQL-TABLE member.

SQL SYNONYM

Use the SQL SYNONYM command to generate SQL CREATE SYNONYM or DROP
SYNONYM statements from the definition of an SQL-USER member.

Use
To generate SQL CREATE SYNONYM statements, enter:

SQL CREATE SYNONYM member-name ;

To generate SQL DROP SYNONYM statements, enter:

SQL DROP SYNONYM member-name ;

where member-name is an encoded SQL-USER member.

To generate other SQL CREATE or DROP statements use the SQL CREATE or SQL DROP
commands.

The generated SQL CREATE SYNONYM and DROP SYNONYM statements can be:

• Printed, or

• Automatically filed in a USER-MEMBER on the MP-AID, or

• Both printed and filed.

To file SQL CREATE SYNONYM or DROP SYNONYM statements in a USER-MEMBER you
must specify an ONTO clause in the SQL SYNONYM command.

SQL CREATE SYNONYM and DROP SYNONYM statements can be generated for a synonym
on a table or a view. An SQL CREATE SYNONYM or DROP SYNONYM statement is generated
for every synonym specified on a SQL-TABLE or SQL-VIEW member in the SYNONYMS
clause of the SQL-USER member.

When you have applied an SQL DROP SYNONYM statement to your SQL/DS environment you
should remove or update the definition of the relevant SQL-USER member to reflect the changes.

� SQL� SIZE sql/ds-table-name �

.

;

�

9 Member Types and Commands

245

The Systems Administrator can tailor the output of the SQL SYNONYM command so that:

• SQL/DS object names are derived from aliases

• Internal diagnostic output is displayed

Refer to "SQL-USER" on page 259 for an example of an SQL CREATE SYNONYM statement
generated from an SQL-USER member.

Refer to "SQL SYNONYM" on page 244 for details the SYNONYMS clause.

Refer to "Filing Generated Output in a User-member" on page 278 for details of the ONTO clause.

 Refer to "Tailoring SQL Statements and SQL/DS Host Language Data Structures" on page 97 for
details of tailorability.

Syntax of the SQL SYNONYM Command

where sql/ds-user-name is the name of a SQL-USER member.

destination is:

where mpaid-member-name is the name of a USER-MEMBER.

SQL-TABLE
SQL/DS tables are defined in the dictionary as SQL-TABLE members.

Refer to "Syntax of the SQL-TABLE Member Type" on page 257 for the syntax of the
SQL-TABLE member type.

Introduction to SQL-TABLE
To document an SQL/DS table in the dictionary use the SQL-TABLE member type. To define the
dictionary member type enter SQL-TABLE at the start of your member definition statement.

Together with SQL-VIEW, it is a member of major interest to the end-user because it contains the
user’s own data and is not a product of the database administrator or other technical specialist. It is
also one of the most used of the SQL/DS member types.

DROP

� SQL SYNONYM �CREATE sql/ds-user-name�

� �

destination .

;

�

PUBLIC

� ONTO �PRIVATE mpaid-member-name

NEW

APPEND

REPLACE

PRINT

NOPRINT

� �

ASG-Manager Products Relational Technology Support: SQL/DS

246

The most important clause available with this member type is the CONTAINS clause. In this
clause you specify the ITEM and GROUP members which represent the columns which form the
table. In the ITEMs and GROUPs referred to are specified the data types for the columns. The
CONTAINS clause, therefore, establishes the relationship between an SQL-TABLE member and
ITEM and GROUP members in the dictionary. In a large dictionary, these same GROUPs and
ITEMs will typically also form part of other file and database segment definitions. For example,
installations with IMS may already have GROUP and ITEM definitions in the dictionary which
can now be shared with the SQL/DS environment.

You can also define the owner of a table (using the CREATOR-OWNER clause), and the dbspace
in which it is held (using the IN clause). The SQL facilities COMMENT and LABEL are
supported by the clauses: SQL-COMMENT and SQL-LABEL.

You will be able to calculate the maximum size of a row in the table and the size of the table
(using the SQL SIZE command), if you define a CARDINALITY clause.

You can define and name referential constraints and document the resulting relationships between
dictionary members using the CONSTRAINT clause.

Clauses may be declared in any order, except for the following:

• The definition of a referential constraint (in the CONSTRAINT clause) must follow your
definition of the columns which make up the table (in the COLUMNS clause)

• An SQL-COMMENT or SQL-LABEL clause applied to a column must follow the
definition for that column (either in a group-name EXPAND clause, or in a
single-column-clause). By the same token, an SQL-COMMENT or an SQL-LABEL which
applies to a table must not immediately follow a column definition, or it will be taken as a
COMMENT or a LABEL on that column.

Note:
The name you give to an SQL-TABLE member may be used as the SQL/DS object name.

Refer to "Documenting the Columns of SQL/DS Tables and Views" on page 84 for information on
documenting the columns of tables.

The AS Clause
Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

Defining the Owner of an SQL/DS Table
Use a CREATOR-OWNER clause to specify the owner of a table. The syntax of the clause is as
follows:

CREATOR-OWNER sql-user

where sql-user is the name of a dictionary member of the type SQL-USER, which represents
the Authorization ID of the owner of the table. The owner of a table is usually the creator, but in
SQL Version 2 Release 2, the owner may not be the creator.

� �

9 Member Types and Commands

247

The clause is checked on encoding to ensure that the member specified is of the correct type. The
clause is checked on generation to ensure that the length of the derived name is compatible with
SQL/DS requirements.

This clause must be present for the successful generation of SQL CREATE, ALTER, and DROP
statements.

Defining the Dbspace in which a Table is Located
Use an IN clause to specify the dbspace in which a table is located. The syntax of the clause is as
follows:

IN sql-dbspace-name

where sql-dbspace-name is the name of a dictionary member of the type SQL-DBSPACE,
which represents the dbspace in which the table is to be located.

The clause is checked on encoding to ensure that the member specified is of the correct type. The
clause is checked on generation to ensure that the length of the derived name is compatible with
SQL/DS requirements.

This clause must be present for the successful generation of an SQL CREATE statement.

Defining the Columns which Make Up an SQL/DS Table
Use a COLUMNS clause to specify the columns of a table. The syntax of the clause is as follows:

ENTERED-AS, HELD-AS, REPORTED-AS, and DEFAULTED-AS are the form keywords. One
of them may be used to specify the form of all the ITEMs and/or GROUPs which represent the
columns of the table. If none is specified, then the DEFAULTED-AS form of the ITEMs and/or
GROUPS is used. If any ITEM or GROUP has no DEFAULTED-AS form, then the usual
ASG-DataManager defaults apply.

For further information, please refer to ASG-Manager Products Source Language Generation.

The purpose of the form keyword is to allow the generation of correct data types for host language
data structures. Therefore, although this clause is not mandatory for generation, you are strongly
advised to include it when you define a table in the dictionary, in order to ensure that the correct
data types are generated in SQL PRODUCE statements or host language data structures.

Use the CONTAINS clause to specify the ITEMs or GROUPs which represent the columns of a
table.

� �

ENTERED-AS

HELD-AS

REPORTED-AS

DEFAULTED-AS

CONTAINS contains-clause� �COLUMNS
<<<<<<<< , <<<<<<

PCTFREE integer
� �

referential-constraint
� �<<<<<<<<<<<<<<<<<<<

ASG-Manager Products Relational Technology Support: SQL/DS

248

The PCTFREE parameter is the percentage of space in each index page reserved for later additions
or amendments to the primary key. The clause is checked on encoding to ensure that the value
specified is within the permitted range. A PCTFREE clause is required only if you define a
primary key for a table.

Use the referential-constraint clause to specify any referential constraint(s) which the table may
have.

Defining the ITEMS and/or GROUPs which Represent Columns
Use a CONTAINS clause to specify the ITEMS and/or GROUPs which represent the columns
which form the table, and to specify the attributes of these columns. The syntax of the clause is as
follows:

where (integer) is the number of columns in a 'column set'. The column specified in the
following single-column-clause will be repeated by the number of times you have specified. On
generation of an SQL statement each column produced will be suffixed automatically by a
number; the first column will be suffixed by 1, the second by 2, and so on. For example, suppose
you have a set of two columns, PERIOD_1 and PERIOD_2. If you specify (2) PERIOD in the
CONTAINS clause (where PERIOD is the name of the ITEM dictionary member which represents
the column) two columns, PERIOD_1 and PERIOD_2, will be generated.

Use a single-column-clause to specify the name of an ITEM or GROUP dictionary
member; each ITEM or GROUP (that is, the ITEMs and/or GROUPs contained by it) represents
one column.

Use the group-name EXPAND clause to specify a GROUP member, which represents one or
more columns.

A table may have up to 255 generated columns; this figure includes all columns generated as a
result of using the group-name EXPAND option or the 'column set' option. The clause is checked
on generation to ensure that the number of columns specified does not exceed the maximum
number permitted.

Use the column-attributes clauses to specify attributes which apply to all columns
generated from the preceding clause.

Defining a Single Column in an SQL-TABLE
Use a single-column clause to specify an ITEM or a GROUP dictionary member which represents
a single column. The syntax of the clause is as follows:

(integer)
single-column-clause

group-name EXPAND
� �CONTAINS

� �column-attributes

item-name

group-name
version

� �

KNOWN-AS local-name

� �

9 Member Types and Commands

249

where:

item-name is the name of a dictionary member of the type ITEM

version is the version number of the named ITEM. If no version is specified, then version
1 is assumed by default.

group-name is the name of a dictionary member of the type GROUP. The GROUP(s)
and/or ITEMS(s) contained by this GROUP are combined to represent one column in the
table.

The clause is checked on encoding to ensure that the member specified is of one of the correct
types (either a GROUP or an ITEM).

Use a KNOWN-AS optional clause to specify a local-name for the ITEM or GROUP. The
local-name may be no longer than 18 characters; this is checked on encoding and on generation.
This local-name is the name of the column. If you do not specify a local-name in this clause, an
alias specified in the ITEM or GROUP will be used as the column-name, (assuming your
environment is tailored to generate aliases as external names). If no alias is specified, then the
ITEM or GROUP member-name will be used as the column-name (reduced, if necessary, to 18
characters by the name reduction process).

Duplicate column names are not permitted. The clause is checked on generation to ensure that no
duplicate column-names are present.

Refer to "Documenting the Columns of SQL/DS Tables and Views" on page 84 for details of how
data types are generated from ITEMs and GROUPs.

Defining Several Columns at Once in an SQL-TABLE
Use a group-name EXPAND clause to specify a number of columns at once. The syntax of the
clause is as follows:

group-name EXPAND

where group-name is the name of a dictionary member of the type GROUP. The purpose of this
clause is to facilitate the generation of several columns in the table at once; it is a shorthand way of
referring to a number of GROUPs and ITEMs (that is, all those contained by the specified
GROUP), which will each represent one column in the table. Your installation may already have
GROUPs defined in its dictionary which are used in existing applications. These GROUPs may
represent records or segments that now need to have counterparts in the SQL environment.

Because of the simpler 'flat-file' structures supported by SQL/DS you need to observe the
following points.

A GROUP to be EXPANDed should not contain any ELSE clauses. These give rise to record
'overlays', that is, records in which certain fields may share the same areas of physical storage. In
SQL/DS such a concept has no meaning, since a column in a table must have a name unique in the
table and cannot 'overlay' or share data with any other column in the table. If you do have an ELSE
clause, it will be ignored.

� �

ASG-Manager Products Relational Technology Support: SQL/DS

250

A GROUP to be EXPANDed may contain 'nested' GROUPs as well as ITEMs. Nesting can
continue to any depth; the only limit is the amount of memory available. However, whereas in
segments and host language data structures, such nesting is meaningful, in an SQL/DS table, it is
not. Therefore, intermediate levels in the data structure are removed, in order to generate a 'flat'
structure.

You may not specify a KNOWN-AS clause or a version for an EXPANDed group; this is checked
on encoding. This means that the column-names generated from a group-name EXPAND clause
are taken either from the KNOWN-AS names of the ITEMs and/or GROUPs contained by the
GROUP specified, or, failing that, from their dictionary names. The length of any column-name
may be no longer than 18 characters; this is checked on encoding. The clause is also checked on
generation to ensure that the length of the derived names is compatible with the external
environment.

Consider the following nested structure which is shown in diagram form for clarity:

Such a structure would be represented in PL/l as:

01 GROUP1,
02 ITEM1,
02 GROUP2,

03 ITEM3
03 GROUP3

04 ITEM5
04 ITEM6
04 GROUP4

03 ITEM4
02 ITEM2

In SQL/DS, 'higher' level groups GROUP1, GROUP2, and GROUP3 would be removed to
produce a 'flat' one-level structure:

 GROUP2 ITEM3
GROUP3 ITEM5

ITEM6
GROUP4 ITEM4

ITEM2

9 Member Types and Commands

251

01 ITEM1
01 ITEM3
01 ITEM5
01 ITEM6
01 GROUP4
01 ITEM4
01 ITEM2

Figure 41 Example of a Nested GROUP Structure

Note:
GROUP4, which does not have any lower level, would be considered to be an elementary field; its
data type defaults to CHAR(l).

If you consider the original nested structure as a 'tree' and a leaf of the tree as a field which does
not have any lower levels, then the root of the tree is taken as the first level and only the 'leaves' of
the tree are taken as the second level.

Defining SQL/DS Column Attributes
A number of optional clauses and keywords (the column-attributes clauses) are available to
specify the attributes of a column or columns defined in a CONTAINS clause.

The column attributes which you specify will apply equally to all of the columns generated from
the preceding CONTAINS clause. Therefore, if you have specified a 'column set' or if you have
used the 'group-name EXPAND' option, then the column attributes will apply equally to all of the
columns so generated. The syntax of these clauses is as follows:

Use the FOR-BIT-DATA keyword to specify the contents of the column as bit (binary) data for
exchange with other systems. You may apply this attribute only to columns specified as having a
data-type of CHAR, VARCHAR, or LONG VARCHAR. This requirement is checked on
generation of SQL CREATE and ALTER statements.

Use the NOT-NULL keyword to specify that the column may not contain a null value.

Use a PRIMARY-KEY keyword to specify that a column or columns form a primary key. Only
one primary-key is permitted in a parent table. The values in the column must be unique and the
column must be defined as NOT-NULL.

FOR-BIT-DATA

� �

NOT-NULL

� �

PRIMARY-KEY ASC

DSC

� �

SQL-COMMENT string

� �

SQL-LABEL string

� �

ASG-Manager Products Relational Technology Support: SQL/DS

252

You can use the SQL-COMMENT and SQL-LABEL clauses in the same way as they are used
with regard to a table, except that in this context they apply only to the column(s) defined in the
preceding CONTAINS clause.

Defining an SQL/DS Referential Constraint
Use the CONSTRAINT clause to define a referential constraint and foreign keys for a table. You
may specify any number of referential constraints for one table. Each referential constraint
requires its own CONSTRAINT clause.

Each CONSTRAINT clause allows you to specify, optionally, a constraint-name, one or more
columns to form the foreign key, the table being referenced and the associated DELETE rule.

You can name a referential constraint without specifying the column or columns that form the
foreign key. Thus you can set up SQL-TABLE definitions with named referential constraints
between them before deciding on the contents of the tables. This feature is useful in a top-down
approach to database design.

The syntax of the clause is as follows:

where:

constraint-name is the name by which the referential constraint will be known to
SQL/DS. The constraint-name may be no longer than 8 characters; this is checked on
encoding. Each constraint-name must be unique within a table. If you omit to specify a
constraint-name, a default name will be generated by SQL/DS.

foreign-key-column-specification is the specification of each column which
makes up the foreign key, and consists of the same information as is used to define the
column in the single-column clause or the group-name EXPAND clause of the COLUMNS
clause.

sql-table-name is the name of a dictionary member of the type SQL-TABLE, which
represents the parent table to which the foreign key refers. One REFERENCES clause must
be present for each foreign key specified. The SQL-TABLE you name must exist, and must
include a valid CREATOR-OWNER clause, for successful generation of an SQL statement.

Use a DELETE clause to specify the DELETE rule to be established by SQL/DS for the referential
constraint. The keywords are the same as those used by SQL/DS and they have the same
meanings. If you omit to specify a DELETE option, none will be generated, and the SQL/DS
default will apply.

� �CONSTRAINT

NAMED constraint-name

� �

FOREIGN-KEY foreign-key-column-specification
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

REFERENCES sql-table-name

� �

DELETE
RESTRICT
CASCADE
SET-NULL

� �

9 Member Types and Commands

253

Defining an SQL/DS Foreign Key
Use a FOREIGN-KEY clause in a dependent table to define the column(s) which form the foreign
key. When you generate an SQL statement from a table with foreign keys, the foreign key
specification must already be present in an identical form in the single-column clause or the
group-name EXPAND clause (except that the 'version' specification is omitted in the foreign key
specification). The syntax of the clause is as follows:

where single-column-clause and group-name EXPAND are used in the same way as
they are used in the COLUMNS clause to define the columns.

Use an m-clause to establish a correspondence between the column(s) forming the primary key
of the parent table defined in the REFERENCES clause (that is, the column to which the foreign
key refers) and the column(s) of the foreign key being specified. The syntax is as follows:

where:

referred-member is the name of an ITEM or GROUP dictionary member, which
represents the column which forms the primary key in the parent table

local-name is the local name for that column (that is, the column-name). The clause is
checked on encoding to ensure that the referred-member specified is of the correct type (that
is, an ITEM or a GROUP). The length of the local-name specified in the KNOWN-AS
clause may be no longer than 18 characters; this is checked on encoding.

The m-clause can be applied only to a single-column clause or to a column set.

You are particularly advised to use an m-clause in cases where the names of the foreign key
columns differ from the names of the corresponding primary key columns in the referenced tables,
or where different ITEM and/or GROUP members represent the foreign key columns of one table
and the corresponding primary key columns of the referenced table. In these cases, if an m-clause
is included, the correspondence between the members is clearly established in the dictionary.

Specifying an Estimate of the Number of Rows in an SQL/DS Table
Use the CARDINALITY clause to specify an estimate of the number of rows which will be
contained in the table. The syntax of the clause is as follows:

CARDINALITY integer

where integer is the number of rows which you foresee the table will contain. The integer may
be no greater than 2147483647.

This clause must be present if you wish to estimate the total size of the table using the SQL SIZE
command.

single-column-clause

group-name EXPAND
m-clause

� �

� �MEMBER referred-member

KNOWN-AS local-name

� �

ASG-Manager Products Relational Technology Support: SQL/DS

254

Defining an SQL-COMMENT on a Table or a Column
Use an SQL-COMMENT clause to specify that a table or column is to have an associated SQL
comment. The syntax of the clause is as follows:

SQL-COMMENT 'string'

where 'string' is the comment. The comment must be a character string consisting of no more
than 254 characters, enclosed in quotes. The length of the string is checked on encoding.

If you use an SQL-COMMENT clause to qualify a column, it must follow the contains-clause
which defines the column.

This clause must be present if you want to generate SQL COMMENT ON statements from an
SQL-TABLE member definition.

Defining an SQL-LABEL on a Table or a Column
Use an SQL-LABEL clause to specify that a table or column is to have an associated SQL
LABEL. The syntax of the clause is as follows:

SQL-LABEL 'string'

where 'string' is the label. The label must be a character string consisting of no more than 30
characters, enclosed in quotes. The length of the string is checked on encoding.

If you use the SQL-LABEL clause to qualify a column, it must follow the contains-clause which
defines the column.

This clause must be present if you want to generate SQL LABEL ON statements from an
SQL-TABLE member definition.

� �

� �

9 Member Types and Commands

255

Example: SQL-TABLE Definition and SQL Generation

Dictionary Definition:

ADD EMP-TABLE ;
SQL-TABLE
CREATOR-OWNER PERS1
IN SQL-DBSPACE1
CARDINALITY 10000
SQL-LABEL 'MAIN EMPLOYEE TABLE'
SQL-COMMENT 'EMPLOYEE’S PERSONAL DETAILS AND SALARY'
COLUMNS HELD-AS
 CONTAINS EMP-NAME 1 KNOWN-AS EMPLOYEE-NAME

NOT-NULL
SQL-COMMENT 'EMPLOYEE’S SURNAME'
,EMP-NAME 2 KNOWN-AS FIRST NAME
SQL-COMMENT 'EMPLOYEE’S FIRST NAME'
,EMP-HOME EXPAND
SQL-COMMENT 'EMPLOYEE’S HOME ADDRESS'
,EMP-NO
PRIMARY-KEY ASC
SQL-COMMENT 'UNIQUE PAYROLL NUMBER'
,SOCIAL-SECURITY-NUMBER
NOT-NULL
,TAX-CODE
NOT-NULL
,(12)MONTHLY-SAL
NOT-NULL
SQL-COMMENT 'SALARY PER MONTH APRIL-MARCH'
,DEPT
NOT-NULL

 PCTFREE 25
 CONSTRAINT NAMED EMP-DEPT
 FOREIGN-KEY DEPT
 MEMBER DEPT-NO KNOWN-AS DEPARTMENT
 REFERENCES DEPT-TABLE
 DELETE RESTRICT
;

1

2

10
11

3

11
3
11
4
11
5
6
11
7

8

11

9

ASG-Manager Products Relational Technology Support: SQL/DS

256

Figure 42 SQL-TABLE Definition and SQL Generation

1. The derived name for the table is the SQL-TABLE member name qualified by the name of
the SQL-USER member which represents the owner’s SQL/DS Authorization ID.

2. The name of the dbspace in which the table is located is taken directly from the table
definition and qualified by the Authorization ID of the owner of the dbspace.

3. The column-names are taken from the KNOWN-AS names which qualify each of the
specifications of the versions of the ITEM which represent the columns.

4. The four columns HOUSE_NUMBER, STREET, CITY, and POSTCODE are each
represented by an ITEM member contained by the GROUP EMP-HOME.

Generated SQL Syntax:

CREATE TABLE PERS1.EMP_TABLE
(EMPLOYEE_NAME
,FIRST_NAME
,HOUSE_NUMBER
,STREET
,CITY
,POSTCODE
,EMP_NO
,SOC_SECUR_NUMBER
,TAX_CODE
,MONTHLY_SAL_1
,MONTHLY_SAL_2
,MONTHLY_SAL_3
,MONTHLY_SAL_4
,MONTHLY_SAL_5
,MONTHLY_SAL_6
,MONTHLY_SAL_7
,MONTHLY_SAL_8
,MONTHLY_SAL_9
,MONTHLY_SAL_10
,MONTHLY_SAL_11
,MONTHLY_SAL_12
,DEPT
,PRIMARY KEY (EMP_NO
,FOREIGN KEY EMP_DEPT

(DEPT)
REFERENCES PERS1.DEPT_TABLE ON DELETE RESTRICT

) IN PERS1.SQL_DBSPACE1
;

GENERATION OF SQL LABEL FROM MEMBER EMP-TABLE
LABEL ON TABLE PERS1.EMP-TABLE

IS 'MAIN EMPLOYEE TABLE'
;

GENERATION OF SQL COMMENT FROM MEMBER SQL-TABLE1
COMMENT ON TABLE PERS1.EMP-TABLE

IS 'EMPLOYEE’S PERSONAL DETAIL AND SALARY'
;
COMMENT ON PERS1.EMP-TABLE

(EMP-NAME 1
EMP-NAME 2
EMP-HOME
EMP-NO
,MONTHLY-SAL

;

CHAR(20)
CHAR(20)
CHAR(4)
CHAR(40)
CHAR(40)
CHAR(9)
CHAR(8)
CHAR(20)
CHAR(8)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
CHAR(20)
ASCENDING)

IS
IS
IS
IS
IS

'EMPLOYEES SURNAME'
'EMPLOYEES FIRST NAME'
'EMPLOYEES HOME ADDRESS'
'UNIQUE PAYROLL NUMBER'
'SALARY PER MONTH APRIL-MARCH'

NOT NULL

NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL
NOT NULL

1

3

4

5
7
5

8

6

9

2

10

11

9 Member Types and Commands

257

5. The column-names EMP_NO and TAX_CODE are taken directly from the dictionary
definition.

6. The PRIMARY-KEY specification is taken directly from the specification in the member
definition.

7. The column-name SOC_SECUR_NUMBER is the reduced form of the dictionary name of
the ITEM which represents it (that is, the name is taken directly from the dictionary
definition, but has been subject to the Name Reduction Process).

8. The 12 occurrences of MONTHLY-SAL specified in the dictionary definition result in the
generation of 12 columns, each called MONTHLY_SAL; each column is uniquely
identified by the integer suffixed to it.

9. Details of the foreign key are taken directly from the CONSTRAINT clause of the member
definition.

10. The SQL-LABEL associated with the table is taken directly from the specification in the
member definition.

11. The SQL-COMMENTs associated with the table and columns are taken directly from the
specifications in the member definition.

Note:
Automatic output of LABELs and COMMENTs from an SQL CREATE command is dependent
upon the Systems Administrator having set up the command variables CM_LABELOPT and
CM_COMMENTOPT in the tailorability executives appropriately.

Syntax of the SQL-TABLE Member Type

where:

referred-member is the name of an SQL-TABLE dictionary member

sql-user-name is the name of an SQL-USER dictionary member

sql-dbspace-name is the name of an SQL-DBSPACE dictionary member

string (in the SQL-COMMENT clause) is a character string of no more than 254
characters

� �SQL-TABLE

AS referred-member

�

CREATOR-OWNER sql-user-name IN sql-dbspace-name
� �

SQL-COMMENT string SQL-LABEL string
� �

COLUMNS column-specification
� �

CARDINALITY integer common clauses
� �

� �

.

;

�

ASG-Manager Products Relational Technology Support: SQL/DS

258

string (in the SQL-LABEL clause) is a character string of no more than 30 characters

integer is the number of rows which you estimate the table will have.

column-specification:

where integer is the percentage of free space in each index page.

contains-clause:

where:

integer is the number of columns in a 'column set'

group-name is the name of a GROUP dictionary member.

single-column clause:

where:

item-name is the name of an ITEM dictionary member

group-name is the name of a GROUP dictionary member

version is an integer in the range 1 to 15

local-name consists of no more than 18 characters

column-attributes:

ENTERED-AS

HELD-AS

REPORTED-AS

DEFAULTED-AS

CONTAINS contains-clause� �
<<<<<<<< , <<<<<<

PCTFREE integer
� �

referential-constraint
� �<<<<<<<<<<<<<<<<<<<

(integer)
single-column-clause

group-name EXPAND
� �

column-attributes

� �

item-name

group-name
version

� �

KNOWN-AS local-name

FOR-BIT-DATA

� �

NOT-NULL

PRIMARY-KEY
ASC
DESCENDING

� �

SQL-COMMENT 'string'

� �

SQL-LABEL 'string'

9 Member Types and Commands

259

where:

string (in the SQL-COMMENT clause) is a character string of no more than 254
characters

string (in the SQL-LABEL clause) is a character string of no more than 30 characters.

referential-constraint:

where:

constraint-name is the name of the constraint, consisting of no more than 18
characters

sql-table-name is the name of an SQL-TABLE dictionary member.

foreign-key-column-specification:

where:

single-column clause is as above

group-name is the name of a GROUP dictionary member.

m-clause:

where:

referred-member is the name of an ITEM or a GROUP dictionary member

local-name consists of no more than 18 characters.

SQL-USER
SQL/DS users are defined in the dictionary as SQL-USER members.

Refer to "Syntax of the SQL-USER Member Type" on page 261 for the syntax of the SQL-USER
member type.

� �CONSTRAINT

NAMED constraint-name

� �

FOREIGN-KEY foreign-key-column-specification
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

REFERENCES sql-table-name

� �

DELETE
RESTRICT
CASCADE
SET-NULL

single-column-clause

group-name EXPAND
m-clause

� �

� �MEMBER referred-member

KNOWN-AS local-name

ASG-Manager Products Relational Technology Support: SQL/DS

260

Introduction to SQL-USER
To document an SQL/DS Authorization ID in the dictionary use the SQL-USER member type. To
define the dictionary member type enter SQL-USER at the start of your member definition
statement.

Use an SQL-USER member to document the owner or creator of SQL/DS objects. Normally, the
creator is also the owner, but if you have SQL/DS Version 2 Release 2, it is possible for the owner
to be a user other than the creator. This allows one user to create objects on behalf of another user
who is the owner.

The SQL/DS object types which are associated with creators and/or owners are dbspaces, tables,
views, and indexes. The dictionary member types SQL-TABLE, SQL-VIEW, and SQL-INDEX
have a CREATOR-OWNER clause which must be present for the successful generation of an SQL
statement. The clause is labelled CREATOR-OWNER because it is used to generate the prefix to
the SQL/DS name of the table, view, or index (to give the fully qualified SQL/DS name). The
prefix can be the name either of the creator, or of the owner (if this differs from the Authorization
ID of the signed-on user).

SQL-USER members are specified as the recipients of privileges in SQL-PRIVILEGE members.

The SQL-USER member type may contain definitions of synonyms (in the SYNONYMS clause).
SQL CREATE SYNONYM statements are generated from this clause.

The AS Clause
Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

Defining SQL/DS Synonyms for Tables and Views
Use a SYNONYMS clause to define synonyms for tables and views owned by the user whose
Authorization ID you are documenting. (The user may be yourself, or another user.) The
synonyms defined here are used to generate SQL CREATE SYNONYM statements. The syntax of
the clause is as follows:

where:

synonym-name is the synonym to be created for the table or view. The synonym may be
no longer than 18 characters. The SQL/DS synonym for the object is taken directly from the
name you specify in this clause. The length of the name is checked on encoding.

sql-table-name and sql-view-name are the names of SQL-TABLE and
SQL-VIEW members respectively, one of which represents the object which is to have the
synonym specified. The clause is checked on encoding to ensure that the member specified
is of one of the correct types.

sql-table-name

sql-view-name

� �
<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<

SYNONYMS synonym-name FOR

9 Member Types and Commands

261

Example: SQL-USER Definition and SQL

Figure 43 SQL-USER Definition and SQL CREATE SYNONYM Generation

1. The user’s SQL ALIAS, 'PRODDBAl', is not used in the generation of this SQL statement.
Instead, it serves as a record in the dictionary of the actual Authorization ID.

Note:
SYNONYM CREATE statements will have to be executed in SQL/DS by the Authorization
ID 'PRODDBA1' to reflect the creator of the synonyms.

2. The first SYNONYM command is generated with CUSTI as the synonym name, taken
exactly as entered in the dictionary definition shown in this example. The fully-qualified
table name is derived by taking the SQL ALIAS (PSGP00) of the SQL-USER member
referred to in the CREATOR-OWNER clause of the SQL-TABLE
CUSTOMER-INVOICE-TABLE. Neither of these two members are shown here.

Note:
To generate an SQL CREATE SYNONYM statement, enter:

SQL SYNONYM CREATE SQLU-PRODUCTION-DBA1;

3. The second SYNONYM command is generated in the same way as described in 2 above.

Syntax of the SQL-USER Member Type

where:

Dictionary Definition:

ADD SQLU-PRODUCTION-DBA1;
SQL-USER
DESCRIPTION 'Authorization for Division 1 DBA team'
ALIAS SQL 'PRODDBA1'
SYNONYMS CUSTI FOR CUSTOMER-INVOICE-TABLE

,CUSTO FOR CUSTOMER-ORDER-TABLE
;

SQL CREATE SYNONYM Syntax Generated from the SQL-USER Definition:

1
2
3

CREATE SYNONYM CUSTI FOR PSGP00.CUST_INV_TB;
CREATE SYNONYM CUSTO FOR PSGP01.CUST_ORD_TB;

2

3

� �SQL-TABLE

AS referred-member

�

sql-table-name

sql-view-name

� �
<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<

SYNONYMS synonym-name FOR

common clauses

� �

�

ASG-Manager Products Relational Technology Support: SQL/DS

262

referred-member is the name of an SQL-USER dictionary member

synonym-name is a synonym, consisting of no more than 18 characters

sql-table-name is the name of an SQL-TABLE dictionary member

sql-view-name is the name of an SQL-VIEW dictionary member.

SQL-VIEW

SQL/DS views are defined in the dictionary as SQL-VIEW members.

Refer to "Syntax of the SQL-VIEW Member Type" on page 275 for the syntax of the SQL-VIEW
member type.

Introduction to SQL-VIEW
To document an SQL/DS view in the dictionary use the SQL-VIEW member type. To define the
dictionary member type enter SQL-VIEW at the start of your member definition statement.

SQL/DS views are possibly the SQL/DS objects most often used by end users, therefore the
SQL-VIEW member type is, with SQL-TABLE, of major importance.

The SQL-VIEW member type bears many similarities to SQL-TABLE.

The main similarity is that the columns which form the view are defined in a column-specification
clause, in which you specify the ITEM and GROUP members which represent the columns which
form the view. As with SQL-TABLE, therefore, this clause establishes relationships between an
SQL-VIEW member and ITEM and GROUP members in the dictionary. Clauses which are
particular to the SQL-VIEW member-type (the SELECT, FROM, WHERE, and HAVING
clauses, which define a view subselect) also establish relationships between a view and the base
table(s) or view(s) which the columns, that form the view, belong to.

You can define the owner of a view, by using the CREATOR-OWNER clause. The SQL/DS
functions COMMENT and LABEL are supported in an SQL-VIEW member, as in an
SQL-TABLE member, by the SQL-COMMENT, and SQL-LABEL clauses.

The SQL subselect part of the SQL statement which is generated from an SQL CREATE VIEW
command is supported by the optional SELECT clause and its dependent FROM, WHERE, and
HAVING clauses.

You may declare the clauses in any order, except that the column-attributes which qualify a
particular column must be declared immediately following the definition of that column. This is
especially important if you use SQL-COMMENT and SQL-LABEL clauses to qualify columns. If
they do not appear immediately after the column-specification of the column to which they apply,
they will be taken as applying to the whole view.

Note:
The name you give to an SQL-VIEW member may be used as the SQL/DS object name.

9 Member Types and Commands

263

Refer to "Naming Conventions for SQL/DS Members" on page 89 for naming conventions, and
the derivation of external names.

The AS Clause
Refer to "Defining an AS Clause" on page 277 for details of the AS clause.

Defining the Owner of an SQL/DS View
Use a CREATOR-OWNER clause to specify the owner of a view. The syntax of the clause is as
follows:

CREATOR-OWNER sql-user

where sql-user is the name of a dictionary member of the type SQL-USER, which represents
the Authorization ID of the owner of the view. The owner of a view is usually the creator, but in
SQL/DS Version 2 Release 2, the owner may not be the creator.

The clause is checked on encoding to ensure that the member specified is of the correct type. The
clause is checked on generation to ensure that the length of the derived name is compatible with
SQL/DS requirements.

This clause must be present for the successful generation of SQL CREATE and DROP statements.

Defining Columns for an SQL-VIEW
Use a column-specification clause to specify the columns of a view. The column-specification
clause is equivalent to the COLUMNS clause in an SQL-TABLE definition. The syntax of the
clause is as follows:

ENTERED-AS, HELD-AS, REPORTED-AS, and DEFAULTED-AS are the form keywords. One
of them may be used to specify the form of all the ITEMS and/or GROUPs which represent the
columns of the view. If none is specified, then the DEFAULTED-AS form of the ITEMs and/or
GROUPs is used. If any ITEM or GROUP has no DEFAULTED-AS form, then the usual
ASG-DataManager defaults apply.

For further information, please refer to ASG-Manager Products Source Language Generation.

The purpose of the form keyword is to allow the generation of correct data types for host language
data structures. Therefore, although this clause is not mandatory for generation, you are strongly
advised to include it when you define a view in the dictionary, in order to ensure that the correct
data types are generated by SQL PRODUCE statements for host language data structures.

Use the CONTAINS clause to specify the ITEMs or GROUPs which represent the columns of a
view.

� �

ENTERED-AS

HELD-AS

REPORTED-AS

DEFAULTED-AS

CONTAINS contains-clause� �
<<<<<<<< , <<<<<<

ASG-Manager Products Relational Technology Support: SQL/DS

264

Defining the ITEMs and/or GROUPs which Represent Columns in an SQL/DS View
Use a CONTAINS clause to specify the ITEMs and/or GROUPs which represent the columns
which form the view, and to specify the attributes of these columns. The syntax of the clause is as
follows:

where (integer) is the number of columns in a 'column set'. The column specified in the
following single-column-clause will be repeated by the number of times you have specified. On
generation of an SQL statement each column produced will be suffixed automatically by a
number; the first column will be suffixed by 1, the second by 2, and so on. For example, suppose
you have a set of two columns, PERIOD_1 and PERIOD_2. If you specify (2) PERIOD in the
CONTAINS clause (where PERIOD is the name of the ITEM dictionary member which represents
the column) two columns, PERIOD_1 and PERIOD_2, will be generated.

Use the single-column-clause to specify the name of an ITEM or GROUP dictionary
member; each ITEM or GROUP (that is, the ITEMs and/or GROUPs contained by the GROUP)
represents a column.

Use the group-name EXPAND clause to specify a GROUP member, which represents one or
more columns.

A view, like a table, may have up to 255 generated columns; this figure includes all columns
generated as a result of using the group-name EXPAND option or the 'column set' option. The
clause is checked on generation to ensure that the number of columns specified does not exceed
the maximum number permitted.

Use the column-attributes clauses to specify attributes which apply to all columns
generated from the preceding clause.

Refer to "Defining the ITEMs and/or GROUPs which Represent Columns in an SQL/DS View"
on page 264 for details of the column-attributes clauses.

Defining a Single Column in an SQL/DS View
Use a single-column-clause to specify an ITEM or a GROUP dictionary member which represents
a single column.

The syntax of the clause is as follows:

where:

item-name is the name of a dictionary member of the type ITEM

(integer)
single-column-clause

group-name EXPAND
� �

column-attributes

� �

item-name

group-name
version

� �

KNOWN-AS local-name

9 Member Types and Commands

265

version is the version number of the named ITEM. The version you specify must
correspond with a version specified in the ITEM. If no version is specified, then version 1 is
assumed by default.

group-name is the name of a dictionary member of the type GROUP. The GROUPs
and/or ITEMs contained by this GROUP are combined to represent one column in the view.

The clause is checked on encoding to ensure that the member specified is of one of the correct
types (either a GROUP or an ITEM).

Use a KNOWN-AS optional clause to specify a local-name for the ITEM or GROUP. The
local-name may be no longer than 18 characters; this is checked on encoding and on generation.
This local-name is the name of the column, unless a column-name is specified in the
COLUMN-NAME clause.

If no column-name is specified at all in the dictionary definition (either in the COLUMN-NAME
clause, or in the KNOWN-AS clause), then an alias specified in the ITEM or GROUP will be used
as the column-name (assuming your environment is tailored to generate aliases as external names).
If no alias is specified the ITEM or GROUP member-name will be used as the column-name
(reduced, if necessary, to 18 characters by the Name Reduction Process).

Duplicate column names are not permitted. The clause is checked on generation to ensure that no
duplicate column-names are present.

Refer to "Documenting the Columns of SQL/DS Tables and Views" on page 84 for details of how
ITEMs and GROUPs are used in SQL/DS views.

Defining Several Columns at Once in an SQL/DS View
Use a group-name EXPAND clause to specify a number of columns at once. The syntax of the
clause is as follows:

group-name EXPAND

where group-name is the name of a dictionary member of the type GROUP. The purpose of this
clause is to facilitate the generation of several columns in the view at once; it is a shorthand way of
referring to a number of GROUPs and ITEMs (that is, all those contained by the specified
GROUP), which will each represent one column in the view. Your installation may already have
GROUPs defined in its dictionary which are used in existing applications. These GROUPs may
represent records or segments that now need to have counterparts in the SQL/DS environment.

Because of the simpler 'flat-file' structures supported by SQL/DS you need to observe the
following points.

A GROUP to be EXPANDed should not contain any ELSE clauses. These give rise to record
'overlays', that is, records in which certain fields may share the same areas of physical storage. In
SQL/DS such a concept has no meaning, since a column in a view must have a name unique in the
view and cannot 'overlay' or share data with any other column in the view. If you do have an ELSE
clause, it will be ignored.

� �

ASG-Manager Products Relational Technology Support: SQL/DS

266

A GROUP to be EXPANDed may contain 'nested' groups as well as items. Nesting can continue to
any depth; the only limit is the amount of memory available. However, whereas in segments and
host language data structures, such nesting is meaningful, in an SQL/DS view, it is not. Therefore,
intermediate levels in the data structure are removed, in order to generate a 'flat' structure.

You may not specify a KNOWN-AS clause or a version for an EXPANDed group; this is checked
on encoding. Therefore, the column-names generated from a group-name EXPAND clause are
taken either from the KNOWN-AS names of the ITEMs and/or GROUPs contained by the
GROUP specified, or, failing that, from their dictionary names. The length of any column-name
may be no longer than 18 characters; this is checked on encoding. The clause is also checked on
generation to ensure that the length of the derived names is compatible with the external
environment.

Defining Column Attributes for an SQL/DS View
A number of optional clauses (the column-attributes clauses) are available to specify the attributes
of a column or columns defined in a CONTAINS clause.

The Column attributes which you specify will apply equally to all of the columns generated from
the preceding CONTAINS clause. Therefore, if you have specified a 'column set' or if you have
used the 'group-name EXPAND' option, then the column attributes will apply equally to all of the
columns so generated. The syntax of these clauses is as follows:

where column-name is the name by which the column will be known. The column-name may
be no longer than 18 characters; this is checked on encoding. The clause is checked on generation
to ensure that the length of the derived name is compatible with SQL/DS requirements.

If you omit to specify a column-name, then the column-name generated is taken from the
KNOWN-AS name, an alias, or the dictionary member name, of the ITEM or GROUP which
represents the column, according to the rules for the derivation of external names.

Note:
Since each column-name must be unique to a view, you may not use this clause after the
'group-name EXPAND' option.

COLUMN-NAME column-name

� �

EXPRESSION "string"

� �

GROUP-BY

� �

TABLE correlation-name

� �

SQL-COMMENT "string"

� �

SQL-LABEL "string"

� �

9 Member Types and Commands

267

where "string" in the EXPRESSION clause is a valid SQL expression enclosed in quotes. The
string can be a maximum of 255 characters long. This string constitutes the expression which is
used to calculate the values to be contained in the column (the values being the result of the
calculation performed on one or more of the other columns in the view). Where a view contains
such a column you should have a corresponding entry in the CONTAINS clause defining an
ITEM, from which the correct data type can be derived on generation of an SQL PRODUCE
command.

The keyword GROUP-BY is used to indicate that the column is to be a 'GROUP BY' column: this
keyword has the same meaning as for SQL/DS.

where correlation-name is the correlation-name of the table or view from which a column is
being selected. The correlation-name may be no longer than 18 characters; this is checked on
encoding. The purpose of this clause is to resolve any ambiguity which may arise when, for
instance, two columns with the same name are present in two tables or views specified in the
FROM clause. The TABLE clause, therefore, corresponds with the CORRELATION-NAME
clause of the FROM clause: the correlation-name given to a table or view in that clause must be
the same as the one given to the table or view in this clause.

You can use the SQL-COMMENT and SQL-LABEL clauses in the same way as they are used
with regard to a view, except that in this context they apply only to the column(s) defined in the
preceding CONTAINS clause.

Refer to "SQL COMMENT and SQL LABEL" on page 180 for details of how to define an
SQL-COMMENT or SQL-LABEL.

Refer to "Naming Conventions for SQL/DS Members" on page 89 for details of naming
conventions and the derivation of external names.

Defining an SQL/DS View Subselect
You can define the subselect of a view in the dictionary by using the SELECT, FROM,
CORRELATION-NAME, WHERE, and HAVING clauses. The syntax of the "subselect" clauses
is as follows:

correlation-clause is:

In the SELECT clause, the keywords ALL and DISTINCT have the same meanings as in SQL/DS.
The clause is checked on encoding to ensure the option specified is a valid one. The keyword
SELECT should not be included in the member definition, if neither option is required, if you omit
the clause completely, the keywords AS SELECT will be generated with neither ALL nor
DISTINCT.

SELECT
� �

ALL
DISTINCT

FROM sql-table-name

sql-view-name

� �
<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<<<<

correlation-clause

� �WHERE "string" HAVING "string"

� �CORRELATION-NAME correlation-name

ASG-Manager Products Relational Technology Support: SQL/DS

268

In the FROM clause, sql-table-name is the name of a dictionary member of the type
SQL-TABLE, and sql-view-name is the name of a dictionary member of the type
SQL-VIEW. The clause is checked on encoding to ensure that the member specified is of the
correct type. The clause is checked on generation to ensure that the length of the derived name is
compatible with SQL/DS requirements.

These are the tables and/or views upon which a view is based. The SELECT clause must be
present for the successful generation of an SQL CREATE statement, and the tables and views
specified in it must exist, and have valid CREATOR-OWNER clauses.

In the CORRELATION-NAME clause, correlation-name is the correlation-name to be
assigned to the sql-table or sql-view specified in the FROM clause. The correlation-name may be
no longer than 18 characters; this is checked on encoding. The correlation-name which you define
here must correspond with that defined in the TABLE clause. The correlation-name is generated
only if the TABLE clause is present.

In the WHERE and HAVING clauses, "string" consists of a valid SQL expression, enclosed in
quotes. This string constitutes the 'where-clause' or the 'having-clause' of the subselect in an SQL
CREATE VIEW statement. It should contain the valid SQL expression of a 'where' search
condition or a 'having' search condition, as appropriate.

Note:
The validity of the SQL expression is not checked, when an SQL-VIEW member is encoded, or
when an SQL statement is generated.

Defining an SQL-COMMENT on a View or a Column
Use an SQL-COMMENT clause to specify that a view or a column is to have an associated SQL
comment. The syntax of the clause is as follows:

SQL-COMMENT "string"

where "string" is the comment. The comment must be a character, string consisting of no more
than 254 characters, enclosed in quotes. The length of the string is checked on encoding.

If you use the SQL-COMMENT clause to qualify a column, it must follow the contains-clause
which defines the column. To qualify a view, put the clause at the start of the data definition
statement, before the column-specification clauses.

This clause must be present if you want to generate SQL COMMENT ON statements from an
SQL-VIEW definition.

Defining an SQL-LABEL on a View or a Column
Use an SQL-LABEL clause to specify that a view or a column is to have an associated
SQL-LABEL. The syntax of the clause is as follows:

SQL-LABEL "string"

where "string" is the label. The label must be a character string consisting of no more than 30
characters, enclosed in quotes. The length of the string is checked on encoding.

� �

� �

9 Member Types and Commands

269

If you use the SQL-LABEL clause to qualify a column, it must follow the CONTAINS clause
which defines the column. To qualify a view, put the clause at the start of the data definition
statement, before the column-specification clauses.

This clause must be present if you want to generate SQL LABEL ON statements from an
SQL-VIEW definition.

Examples of SQL-VIEW Definitions and SQL Generation

Example 1: SQL-VIEW Definition Containing a Join and SQL Generation
In this example, a view is being defined which will have columns giving employees’ names, their
payroll numbers, their departments, and their annual salaries. The view must be defined as the join
of two tables. The two tables are:

EMP-TABLE (correlation name E) which contains the following columns:

EMP-NAME
SOC- SEC-NO
DEPT-NO
MONTHLY-SAL

and DEPT-TABLE (correlation-name D) which contains the following columns:

DEPT-NO
DEPT-NAME.

The view is to have four columns, as follows:

NAME (derived from EMP-NAME in EMP-TABLE)

PAYROLL-NO (derived from SOC-SEC-NO in EMP-TABLE)

DEPARTMENT (derived from DEPT-NAME in DEPT-TABLE)

ANNUAL-SAL (derived by multiplying the column MONTHLY-SAL in EMP-TABLE by 12).

The join column is DEPT-NO, which is present in both tables. That is, to obtain the department
name the employee table must be joined with the department table by matching the department
numbers.

ASG-Manager Products Relational Technology Support: SQL/DS

270

Figure 44 SQL-VIEW Containing a Join and SQL Generation

1, 2. The derived name for the view is the SQL ALIAS of the SQL-VIEW member, qualified by
the SQL ALIAS defined in the SQL-USER member which represents the owner’s SQL/DS
Authorization ID.

Dictionary Definition:

ADD AA-USER1-PAYROLL;
SQL-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'PAYROLL'

HELD-AS CONTAINS

SELECT

FROM EMP-TABLE CORRELATION-NAME E
,DEPT-TABLE CORRELATION-NAME D

WHERE "E.DEPT-NO = D.DEPT-NO"

;

EMP-NAME
,SOC-SEC-NO KNOWN-AS EMP-NO
,DEPT-NAME
,DEPT-NO
,MONTHLY-SAL

EXPRESSION "12*MONTHLY-SAL"

TABLE E
TABLE E
TABLE D
TABLE D
TABLE E

COLUMN-NAME NAME
COLUMN-NAME PAYROLL-NO
COLUMN-NAME DEPARTMENT
COLUMN-NAME DEPT-NUM
COLUMN-NAME ANNUAL-SAL

1

2
3

>4

5

6

7

V

Generated SQL Syntax:

CREATE VIEW

AA.PAYROLL

(NAME
,PAYROLL_NO
,DEPARTMENT
,DEPT_NUM
,ANNUAL_SAL)

AS SELECT DISTINCT

E.EMP_NAME
,E.EMP_NO
,D.DEPT_NAME
,D.DEPT_NO
,12*MONTHLY_SAL

FROM EMP_TABLE E
,DEPT_TABLE D

WHERE E.DEPT_NO = D.DEPT_NO

;

1, 2

4

5

3

6

7

9 Member Types and Commands

271

3. The columns to be selected are qualified by the correlation names of the tables to which they
belong.

4. The names which the columns in the view are to have are taken directly from the
COLUMN-NAME clauses in the member definition.

5. The SELECT option is taken directly from the member definition.

6. The tables from which the columns are selected and their correlation-names are taken
directly from the FROM clause in the member definition.

7. The WHERE SQL expression is taken directly from the WHERE clause.

Example 2: SQL-VIEW Definition Containing a GROUP BY and SQL Generation
In this example, a view is being defined which will have columns giving department number,
department name, and the total number of employees in the department, for department numbers
in the range 100 to 899. The information is derived from a single table:

DEPT-TABLE which contains the following columns:

DEPT-NO
DEPT-NAME
EMP-NO.

The view’s three columns are:

NO (derived from DEPT-NO)

DEPARTMENT (derived from DEPT-NAME)

TOTAL-STAFF (derived by counting the number of rows for each department).

The view must be defined using GROUP-BY and HAVING clauses, so that the column function
COUNT(*) can be used to add up to the total number of rows for each department.

ASG-Manager Products Relational Technology Support: SQL/DS

272

Figure 45 SQL-VIEW Containing a GROUP BY and SQL Generation

1, 2. The derived name for the view is the SQL ALIAS of the SQL-VIEW member, qualified by
the SQL ALIAS defined in the SQL-USER member which represents the owner’s SQL/DS
Authorization ID.

Dictionary Definition:

SQL-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'DEPT-STATS'

HELD-AS CONTAINS

DEPT-NO
,DEPT-NAME
,IT-INTEGER
EXPRESSION 'COUNT(*)'

FROM DEPT-TABLE

HAVING 'DEPT-NO BETWEEN 100 and 899'

;

GROUP-BY
GROUP-BY

COLUMN-NAME NO
COLUMN-NAME DEPARTMENT
COLUMN-NAME TOTAL-STAFF

ADD AA-USER1-DEPT-STATS;

1

2

3

4

5

6

Generated SQL Syntax:

CREATE VIEW

AA.DEPT_STATS

(NO
,DEPARTMENT
,TOTAL_STAFF)

AS SELECT

DEPT_NO
,DEPT_NAME
COUNT(*)

FROM DEPT_TABLE

HAVING DEPT_NO BETWEEN 100 AND 899;

;

1, 2

4

5

3

6

3GROUP-BY DEPT-NO
, DEPT_NAME

9 Member Types and Commands

273

3. The columns to be selected are taken directly from the CONTAINS clause. The third
column, which will contain the result of the operation carried out on the DEPT-NO and
EMP-NO columns, is defined as an ITEM, IT-INTEGER.

4. The names which the columns in the view are to have are taken directly from the
COLUMN-NAME clauses in the data definition.

5. The table from which the columns are drawn is taken directly from the FROM clause in the
member definition.

6. The HAVING SQL expression is taken directly from the HAVING clause.

Example 3: SQL-VIEW Definition Containing a GROUP BY and a Join and SQL Generation
In this example, a view is being defined which will have columns giving department number,
department name, and total hours worked on the various projects for the department provided that
total exceeds 100 hours. The view must be defined as the join of two tables:

DEPT-TABLE (correlation-name D) which contains the following columns:

DEPT-NO
DEPT-NAME
PROJ-NO

and PROJ-TABLE (correlation-name P) which contains the following columns:

PROJ-NO
PROJ-NAME
TOTAL-HOURS.

The view’s three columns are:

DEPT-NO (derived from DEPT-NO in DEPT-TABLE)

DEPARTMENT (derived from DEPT-NAME in DEPT-TABLE)

TOTAL-HOURS (derived by summing the TOTAL-HOURS column in the table obtained by
joining DEPT-TABLE and PROJ-TABLE on the common column PROJ-NO).

The join column is PROJ-NO, which is present in both tables. The view’s subselect must also have
a GROUP-BY clause to be able to sum the total hours in one department and also a HAVING
clause to be able to exclude all the groups which do not have total hours exceeding 100 hours.

Notice the use of the ITEM member IT-INTEGER. Its purpose is merely to act as a 'place marker'
in the CONTAINS clause and to ensure that the correct data type is generated for host structures.

ASG-Manager Products Relational Technology Support: SQL/DS

274

Figure 46 SQL-VIEW Containing a Join and a GROUP BY and SQL Generation

1,2. The derived name for the view is the SQL ALIAS of the SQL-VIEW member, qualified by
the SQL ALIAS defined in the SQL-USER member which represents the owner’s SQL/DS
authorization ID.

Dictionary Definition:

SQL-VIEW

CREATOR-OWNER AA-USER1

ALIAS SQL 'DEPT-HOURS'

HELD-AS CONTAINS

DEPT-NO
,DEPT-NAME
,IT-INTEGER
EXPRESSION 'SUM(P.TOTAL-HOURS)'

FROM DEPT-TABLE CORRELATION-NAME D

HAVING 'SUM(P.TOTAL-HOURS) > 100'

;

GROUP-BY TABLE D
GROUP-BY COLUMN-NAME DEPARTMENT

COLUMN-NAME TOTAL-HOURS

ADD AA-USER1-DEPT-HOURS;

1

2

3

4

5

7

V

 ,PROJ-TABLE CORRELATION-NAME P

WHERE 'D.PROJ-NO = P.PROJ-NO' 6

Generated SQL Syntax:

CREATE VIEW

AA.DEPT_HOURS

(DEPT_NO
,DEPARTMENT
,TOTAL_HOURS)

AS SELECT

D.DEPT_NO
,DEPT_NAME
,SUM(P.TOTAL_HOURS)

FROM DEPT_TABLE D

HAVING SUM(P.TOTAL_HOURS) > 100;

;

1, 2

4

5

3

7

3GROUP-BY DEPT-NO
, DEPT_NAME

 ,PROJ_TABLE P

WHERE D.PROJ_NO = P.PROJ_NO 6

9 Member Types and Commands

275

3. The columns to be selected are taken directly from the CONTAINS clause. The third
column, which will contain the result of the operation carried out on the TOTAL-HOURS
columns of DEPT-TABLE and PROJ-TABLE is defined as an ITEM, IT-INTEGER.

4. The names which the columns in the view are to have are taken directly from the
COLUMN-NAME clauses in the data definition, or, in the case of the first column, directly
from the dictionary member name of the ITEM which represents the column.

5. The table from which the columns are drawn is taken directly from the FROM clause in the
member definition.

6. The WHERE SQL expression is taken directly from the WHERE clause.

7. The HAVING SQL expression is taken directly from the HAVING clause.

Syntax of the SQL-VIEW Member Type

where:

referred-member is the name of an SQL-VIEW dictionary member

sql-user-name is the name of an SQL-USER dictionary member

sql-table-name is the name of an SQL-TABLE dictionary member

sq1-view-name is the name of an SQL-VIEW dictionary member

'string' (in the WHERE clause) is a character string

'string' (in the HAVING clause) is a character string

'string' (in the SQL-COMMENT clause) is a character string of no more than 254
characters

� �SQL-VIEW

AS referred-member

�

CREATOR-OWNER sql-user-name
� �

SQL-COMMENT 'string' SQL-LABEL 'string'
� �

column-specification
� �

SELECT
� �

ALL
DISTINCT

FROM sql-table-name

sql-view-name

<<<<<<<<<<<<<<<<<<<<<<<< , <<<<<<<<<<<<<<<<<<<<<<<

correlation-clause

� �

WHERE 'string'

� �

HAVING 'string'

common clauses

� ��

� �

.

;

�

ASG-Manager Products Relational Technology Support: SQL/DS

276

'string' (in the SQL-LABEL clause) is a character string of no more than 30 characters.

column-specification:

contains-clause:

where:

integer is the number of columns in a 'column set'

group-name is the name of a GROUP dictionary member.

single-column clause:

where:

item-name is the name of an ITEM dictionary member

group-name is the name of a GROUP dictionary member

version is an integer in the range 1 to 15

local-name consists of no more than 18 characters.

column-attributes:

where:

column-name is the name of the column, consisting of no more than 18 characters

'string' (in the EXPRESSION clause) is a character string of no more than 255 characters

correlation-name is the name of a correlated table or view, consisting of no more than
18 characters

ENTERED-AS

HELD-AS

REPORTED-AS

DEFAULTED-AS

CONTAINS contains-clause� �
<<<<<<<< , <<<<<<

(integer)
single-column-clause

group-name EXPAND
� �

column-attributes

� �

item-name

group-name
version

� �

KNOWN-AS local-name

COLUMN-NAME column-name

� �

EXPRESSION 'string'

GROUP-BY

� �

TABLE correlation-name

SQL-COMMENT 'string'

� �

SQL-LABEL 'string'

9 Member Types and Commands

277

'string' (in the SQL-COMMENT clause) is a character string of no more than 254
characters

'string' (in the SQL-LABEL clause) is a character string of no more than 30 characters.

correlation-clause:

where:

correlation-name is the name of a correlation name, consisting of no more than 18
characters.

Defining an AS Clause

Use the AS clause when you are defining a dictionary member which contains one or more clauses
which are duplicated in another member of the same type.

When an SQL statement is generated from a member containing an AS clause, information is
extracted from an already defined member (the S member). This avoids re-keying of information,
and saves space in the dictionary.

To define a dictionary member using the AS clause:

• Declare the member type of the member you want to create

• Declare the clauses which are unique to this member, or whose values differ from the AS
member’s

• Use the AS clause to refer to the member from which you wish to extract the remaining
clauses.

The syntax of the clause is as follows:

AS referred-member

where referred-member is the name of a dictionary member of the same type.

For example, suppose you have defined a table in a member named PROJECT, and you want to
define another table called SPECIAL-PROJECT which is identical in every respect to PROJECT.
When you define SPECIAL-PROJECT, you can use the AS clause to refer to PROJECT. On
generation of a CREATE statement, the clauses in PROJECT are used to create
SPECIAL-PROJECT.

The two tables PROJECT and SPECIAL-PROJECT would be identical.

� �CORRELATION-NAME correlation-name

� �

ASG-Manager Products Relational Technology Support: SQL/DS

278

Filing Generated Output in a User-member
You can automatically file the output you have generated in a private or public USER-MEMBER
on the MP-AID by specifying an ONTO clause. You can also stop the output you have generated
being printed.

The generated output can be filed in either a private or a public USER-MEMBER. Specify the
keyword PUBLIC to file the output in a public USER-MEMBER or PRIVATE to file it in a
private USER-MEMBER.

The USER-MEMBER can be either a new or an existing member. Users with different Logon
Identifiers can create distinct USER-MEMBERs with the same name.

To file the generated output in a new USER-MEMBER either specify the keyword NEW (for
readability) or do not specify any keyword.

To file the generated output in an existing USER-MEMBER specify either of the keywords
APPEND or REPLACE. The output generated will replace the current contents of the member if
REPLACE is specified or be appended to it if APPEND is specified. A new USER-MEMBER will
be created if the member does not already exist.

When appending or replacing the contents of an existing USER-MEMBER the user who created
that member can change it from a private to a public USER-MEMBER, or the reverse, by
specifying either PRIVATE or PUBLIC.

To print the generated output either specify the keyword PRINT (for readability) or do not specify
any keyword. To stop the generated output being printed specify NOPRINT.

Manager Products messages are not filed in the USER-MEMBER and are always printed.

279

Appendix
The Manager Products Name Reduction

Process
Introduction to the Name Reduction Process

The Name Reduction Process is invoked automatically to ensure that the length of a name which
will be used in an external environment is no longer than the maximum acceptable to the relevant
environment. Name reduction takes place when you:

• Generate Database Definition Language (DDL) statements from dictionary members

• Generate host language data structures in COBOL, Assembler, or PL/I from dictionary
members

• Populate the dictionary with members generated from the WBDA.

The principle of the Name Reduction Process is, wherever possible, to recognize constituent parts
of names and to shorten each part. As a result, duplicate names are less likely to arise than if a
simple process of truncation were applied to the complete name. In this way, as much as possible
of the meanings of the names is preserved.

The Procedures Language provides a function (called REDUCE) which allows you to define the
parameters for name reduction, in other circumstances.

Description of the Name Reduction Process

The Name Reduction Process checks firstly whether the name is a single word (that is, one
character string without separator characters). If such a single-word name is longer than permitted
by the external environment, one of the following processes will occur:

• Single-word names with 15 or less characters are truncated from the right, until the
permitted maximum number of characters is achieved

• Single-word names with more than 15 characters have characters removed from the middle,
until the permitted number of characters is achieved.

ASG-Manager Products Relational Technology Support: SQL/DS

280

Secondly, if a name consists of 2 or more constituent parts, separated by recognized separator
characters (such as hyphens or underscores), the Name Reduction Process is as follows:

• If necessary, the longest constituent part of the name is truncated from the right, back to the
next character which is not a vowel

• If the name is still longer than permitted, then the next longest constituent part of the name
is truncated from the end, in the same way. This process continues until the name length,
including the separator character(s), is within the permitted maximum. In this process, no
constituent part of the name is truncated to less than 2 characters.

If the number of constituent parts of a name is greater than the optimum number which would
leave at least 2 characters in each part, separated by recognized separators, then the first of the
following processes which will give the desired result will occur:

• The constituent parts of the name are truncated from the right, back to the next character
which is not a vowel, as above

• The separators are removed.

If a name cannot be reduced to its permitted maximum length by any of the processes described
above, then the required number of characters (including separator characters) are removed from
the middle of the name.

Example of Name Reduction
A DB2 table, defined in the dictionary as a DB2-TABLE member, may have defined in it two
columns called:

• SPECIAL-ORDER-DATE-MONTH and

• SPECIAL-ORDER-DATE-YEAR.

Simple truncation to 18 characters would produce, in the external environment:

• SPECIAL_ORDER_DATE and

• SPECIAL_ORDER_DATE

• Two columns with identical names, which is illegal.

However, the Name Reduction Process would reduce the constituent parts of the first name:

• -SPECIAL,

• -ORDER

• -and MONTH

in turn, to achieve:

SPEC_ORD_DATE_MONT

Appendix - The Manager Products Name Reduction Process

281

and reduce the constituent parts of the second name:

• SPECIAL

• and ORDER

to achieve:

SPEC-ORD-DATE-YEAR.

The result is two unique names. The length of each is within the permitted maximum for DB2
column names (18 characters), and the meanings of the names have been preserved.

ASG-Manager Products Relational Technology Support: SQL/DS

282

283

Glossary

Below is a brief description of some of the terms used in this manual.

Array
Consists of an identifiable set of elements where each element represents an item of data.

ASG Defined Variables
These are variables which have names defined by ASG. They are:

• Local Variables (&L) in the range &L0 to &L99

• Global Variables (&G) in the range &G0 to &G9

• Installation Variables (&I) in the range &I0 to &I99

• Parameters (&P) in the range &P0 to &P99

There are also System Variables such as &CURS which are read-only variables that have values
automatically assigned by Manager Products.

Command Variables
These variables are defined by the COMMAND directive and assigned by an instruction of the
form:

variable-name = expression

They retain their value for the duration of that Executive Routine including any called or calling
Executive Routines. Unlike Global Variables the values assigned to Command Variables are not
retained to the end of the logon session.

Corporate Executive Routine
A type of Executive Routine that can only be set up by the Systems Administrator. They can be
used, subject to Access Control, by all users.

Current Line
A designated line of a ASG-ControlManager buffer created during a ASG-ControlManager
interactive session. In the current ASG-ControlManager Release this is the top line of the Data
Area when the buffer is displayed on the screen. There is always a Current Line for the buffer
being processed even when that buffer is not displayed on the screen (as can occur when the
contents of a buffer are processed by an Executive Routine).

ASG-Manager Products Relational Technology Support: SQL/DS

284

Cursor Spatial Commands
Executive Routines of this type are used with the Cursor System Variable (&CURS). The
command is usually entered by means of a PF key. The value of the Cursor System Variable is
determined using the position of the cursor on the screen.

Data
Information which is supplied to, or created within an Executive Routine, for later use within the
Executive Routine. Data is stored in Executive Routines within variables.

Directives
These are instructions which either control the instruction sequence within an Executive Routine,
or perform operations on data which is either internal to the Executive Routine or supplied by the
user in the form of parameters, for example GOTO, IF, and WRITEL.

Executive Commands
They are the same as Primary Commands in that they may operate on external data or parameters
supplied by the user. However they may not be executed outside Executive Routines as they are
only applicable within the context of Executive Routines. For example: DACCESS, SENDF,
DRETRIEVE.

EXECUTIVE members
These members reside in the MP-AID and can be used, subject to Access Control, by all users.

Executive Routine
A generic term for Corporate Executive Routine, User Executive Routine, or Transient Executive
Routine.

EXECUTIVE-ROUTINE members
These members reside in the Manager Products Administration Dictionary. Once they have been
constructed by the Systems Administrator onto the MP-AID, they become EXECUTIVE members
on the MP-AID.

Full Evaluation
Certain expressions, for example those given following a SAY directive are subject to Full
Evaluation. Unlike Limited Evaluation arithmetic expressions and functions are evaluated.

Function
An expression which returns a result, for example LENGTH(DRINK) will return a value of 5
indicating that the length of character string DRINK is 5 characters.

Global/Command User Defined Variable Index
This index contains a record of all user defined Global or Command Variables which are currently
active. Variables are set up in the index using the GLOBAL or COMMAND directives. Variables
are removed from the index using the DROP or RELEASE directives.

Global Variables
These variables are assigned by using an instruction of the form:

variable-name = expression

Glossary

285

They retain their value for the duration of the Manager Products session, or until reassigned. They
may have ASG defined names in the range &G0 to &G99 or they may have user defined names of
up to 50 characters providing that the variable has been previously declared as global using the
GLOBAL directive.

Installation Variables
These are variables which are assigned by the Systems Administrator during logon to Manager
Products and cannot be reassigned by the general user.

Instruction
In an Executive Routine an instruction specifies an action which the Manager Products software is
to perform. This comprises all components of an Executive Routine except for labels and
comments. Instructions may be any of the following:

• Directives

• Primary Commands

• Executive Commands.

Limited Evaluation
Certain expressions, for example those given following a WRITEL directive are subject to
Limited Evaluation. This differs from Full Evaluations in that arithmetic expressions and
functions are not evaluated.

Linear Commands
Executive Routines of this type are normally used with parameters, and are input in the Line
Command Area. The parameter values are derived from the contents of the associated data line.

Local Variable Index
This index contains a record of all Local Variables which are currently active. Variables are set up
in the index using the LOCAL directives or when they are first assigned a value within the current
Executive Routine. Variables are removed from the index using the DROP or RELEASE
directive.

Local Variables
These variables are assigned by using an instruction of the form:

variable-name = expression

and retain their value only for the duration of the Executive Routine in which they are assigned or
until reassigned. They may have ASG defined names in the range &L0 to &L99 or they may have
a user defined name of up to 50 characters. User defined local variables must be declared as local
using the LOCAL directive if the same variable name is currently in use as a Global or Command
User Defined Variable.

Manager Products Administration Dictionary
A dictionary controlled by the Systems Administrator. This dictionary is used to set up
EXECUTIVE-ROUTINE members.

MP-AID
The Manager Products Administrative and Information Dataset.

ASG-Manager Products Relational Technology Support: SQL/DS

286

Parameters
In the context of Procedures Language, parameters represent values which are input by the user at
the time an Executive Routine is invoked.

Primary Commands
These commands may operate on data which is either supplied by the user or is external to that
generated by the Executive Routine. Primary Commands may be issued outside Executive
Routines in the Command Line or within Executive Routines. For example:

LIST ONLY VERSION;

Systems Administrator
The Systems Administrator, through the Manager Products Administration Dictionary and the
MP-AID, controls access to all Manager Products and dictionaries, and is responsible for the
configuration of the Manager Products environment.

System Assigned Variables
System Variables are referred to as being System Assigned Variables as unlike all other types of
variable their values cannot be assigned by users; they are automatically assigned by
ASG-ControlManager.

System Variables
These are variables which are automatically assigned by ASG-ControlManager and cannot be
changed by any user.

Transient Executive Routine
This type of Executive Routine is set up by a user as a TRANSIENT member.

TRANSIENT members
Members of this type reside in the MP-AID. They are entered directly into the MP-AID by
individual users. TRANSIENTs are automatically deleted when the originating user logs off from
Manager Products.

User Assigned Variables
User Defined Variables can be subdivided into variables which cannot be assigned by the user
(System Assigned Variables, that is System Variables) and variables which may be assigned by
the user (User Assigned Variables, that is all other variable types).

User Defined Functions
Functions which may be written by users in a language other than the Procedures Language.

User Defined Variables
These are variables which have user defined names of up to 50 alphanumeric characters long.

User Executive Routine
This type of Executive Routine is set up by a user as a USER-MEMBER. It can only be accessed
by the originating user or a user having the same Logon Identifier as the originating user.

Glossary

287

USER-MEMBERs
Members of this type reside in the MP-AID. They are entered directly into the MP-AID by
individual users, and can be accessed only by the originating user or a user having the same Logon
Identifier as the originating user.

Variables
Locations to which names are assigned which allow data to be stored within Executive Routines.

ASG-Manager Products Relational Technology Support: SQL/DS

288

289

Index

Symbols
* symbol 145
? symbol 145

in the EXTRACT command 145
in the ISQL command 150

A
ACQUIRE keyword 172
ACTIVATE clause 177–179
ADD clause 175–177
ADDING keyword 160
ALL clause 178
ALL keyword 162
ALTER keyword 173
APPEND keyword 278
AS clause 277
Assembler SQL/DS host language data

structure generation 237

B
BOTH keyword 164
BUFFER keyword 151

C
CARDINALITY clause 253
children SQL/DS objects 145
cluster diagrams

example of SQL PLOT CLUSTER
output 59–62

format of SQL PLOT CLUSTER
output 59

information given in SQL PLOT
CLUSTER output 60

COBOL SQL/DS host language data
structure generation 237

COLUMNS clause
SQL-TABLE 247
with the SQL ALTER command 175

COMMAND members 115
CONSTRAINT clause

SQL-TABLE 252

with the SQL ALTER command 176,
178

CONTAINS clause
SQL-INDEX 193
SQL-TABLE 248
SQL-VIEW 264

conventions page vi
Corporate Executive Routines

description of
MPDYMMLOCC 131
MPDYWTCVDT 130
MPDYWTDFLT 130
MPDYWTEXCC 131
MPDYWTMT42 131
MPDYWTOCOD 131
MPDYWTRDMR 130

SQL/DS dictionary definitions 130
CREATE keyword in the SQL SYNONYM

command 244
CREATOR clause 144
CREATOR-OWNER clause

SQL-DBSPACE 184
SQL-INDEX 193
SQL-TABLE 246
SQL-VIEW 263

D
database design

creating entity and userview
models 29

examples of generated definitions
SQL-INDEX 78
SQL-TABLE 77
SQL-VIEW 79
SYSTEM 80

examples of the design process 33
features to support SQL/DS 28
generated definitions

SQL members 76–80
SQL-INDEX 77
SQL-TABLE 76
SQL-VIEW 78

ASG-Manager Products Relational Technology Support: SQL/DS

290

SYSTEM 79
generating relational schema in the

WBDA 29
generating SQL design in the

WBDA 30
introduction 25
introduction to examples 33
introduction to referential structures

and cycles 27
introduction to SQL PLOT

CLUSTER 200
introduction to SQL REPORT 240
naming relations 29
overview 25
overview diagram of 23
populating dictionary with SQL

member definitions 31
previewing member definitions 32
reporting SQL design 31
SQL objects generated from relational

schema 30
SQL PLOT CLUSTER

all tables 201
command 200
tables in a specific format 202
tables selected by name 201
tables selected by WBDA

number 201
SQL REPORT

all tables 240
command 240
tables in a specific format 242
tables selected by name 241
tables selected by WBDA

number 241
support for referential integrity 26
the design process 29

DBSPACE keyword 144
DEACTIVATE clause in the SQL ALTER

command 177–179
design process

examples 33
generating relational schema in

WBDA 29
generating SQL design in the

WBDA 30
introduction to examples 33
naming relations 29
populating dictionary with SQL

member definitions 31
previewing member definitions 32
reporting SQL design 31
SQL objects generated from relational

schema 30

the SQL/DS database design
process 29

DETAILS keyword 164
DROP clause in the SQL ALTER

command 175
DROP keyword in the SQL SYNONYM

command 187, 245
DUPLICATES keyword 162
dynamic SQL services

an illustration 105
creating and populating a table 115
creating your own HELP text 122
importing information and assigning it

to command variables 118
inserting rows into a table 117
submitting any SQL statement that can

be prepared 120

E
EXECUTIVE members 115
executive routines 109
EXPAND clause

nested GROUP-SQL-TABLE 250
SQL-INDEX 194
SQL-TABLE 249
SQL-VIEW 265

export
a table layout 237
defining the SQL/DS data type of

columns 84
diagram of SQL statement and

SQL/DS host language data
structure generation 95

generating in host language
an SQL/DS host language data

structure 237
an SQL/DS host language

indicator structure 103
tailored DATE and TIME

character field lengths
structures 104

tailored SQL statements 97
SQL ACQUIRE statements 172

to activate or deactivate a
primary key and all
foreign keys 178

to activate or deactivate a
primary key on a
table 177

to add columns to a table 175
to add or drop a primary key on

a table 175

Index

291

to add or drop a referential
constraint on a table 176,
178

to combine alterations to a
table 179

SQL ALTER TABLE statements 173
SQL COMMENT ON statement 180
SQL CREATE statement 182
SQL CREATE SYNONYM

statement 244
SQL DROP statement 187
SQL DROP SYNONYM

statement 244
SQL GRANT statement 190
SQL LABEL ON statement 180
SQL REVOKE statement 190
SQL/DS data types 96

EXTRACT SQL command 143

F
FOR-BIT-DATA keyword 251
FOREIGN-KEY clause 253
FROM keyword 151

G
GRANTOR clause 230
group

keyword in the RECONCILE
command 162

SQL/DS column definition 84

H
HELP keyword 150

I
IGNORING clause 160
import 123
IMPORT keyword 154
IN clause 247
INDEX keyword 144
INITIALIZE keyword 158
ISQL command 149
ITEM members in SQL/DS column

definition 84

L
LIST keyword 164
LOCK clause 185

M
MEMBER keyword 162

N
name reduction process

description 279
example 280
introduction 279

NAMED clause 176, 178
names of members documenting imported

SQL/DS objects 126
NEW keyword 278
NHEADER clause 185
NO-COMMON-CLAUSES keyword 163
NO-IMPACT keyword 189
NOPRINT keyword 278
NOT-NULL keyword 251
NO-XREF keyword 164
NUMBER clause 176, 178
NUMBER keyword 161–163

O
ON clause 193
ONTO clause 278

P
PAGES clause 185
parent SQL/DS objects 145
PCTFREE clause

SQL-DBSPACE 185
SQL-INDEX 195

PCTINDEX clause 185
PL1 SQL/DS host language data structure

generation 237
POPULATE command 151
PREVIEW command

description of MPDYMMLOCC 131
for SQL/DS dictionary

definitions 130
previewing the definitions generated

from the WBTA 154
syntax 155

PRIMARY-KEY keyword
SQL ALTER 175, 177
SQL-TABLE 251

PRINT keyword 278
PRIVATE keyword

SQL-DBSPACE 184
with the SQL and PREVIEW

IMPORT commands 278
privilege types

SQL-PRIVILEGE
ALL 231
PROGRAM 232
SYSTEM 232
TABLE 232

ASG-Manager Products Relational Technology Support: SQL/DS

292

procedures language terminology 283
PRODUCE keyword 237
PROGRAM privilege 232
PUBLIC keyword

SQL-DBSPACE 184
with the PREVIEW IMPORT

command 278

R
RADD command 156
RECONCILE command 157

description of
MPDYMMLOCC 131
MPDYWTCVDT 130
MPDYWTDFLT 130
MPDYWTEXCC 131
MPDYWTMT42 131
MPDYWTOCOD 131
MPDYWTRDMR 130

syntax 168
referenced SQL/DS objects 145
RENAMING keyword 161
REPLACE keyword 278
REPLACING keyword 161
RIGN command 168
ROLLBACK keyword 152
RREN command 169
RREP command 170
RUPD command 171

S
SIZE keyword 243
SQL ACQUIRE

deriving SQL/DS object names from
aliases 101

displaying internal diagnostic
output 100

statement generation 172
SQL ALTER command

ACTIVATE, DEACTIVATE
ALL clauses 178
CONSTRAINT,NAMED,

NUMBER clauses 178
PRIMARY-KEY clauses 177

ADD COLUMNS 175
ADD CONSTRAINT NAMED and

NUMBER 176
ADD PRIMARY-KEY 175
combinations of changes 179
deriving SQL/DS object names from

aliases 101
displaying internal diagnostic

output 100

DROP PRIMARY-KEY 175
syntax 179

SQL cluster plot
example 59
format of cluster diagram 57
information in cluster diagrams 58
introduction 56
SQL design relationship matrix 62

SQL COMMENT command
deriving SQL/DS object names from

aliases 101
displaying internal diagnostic

output 100
generating SQL CREATE,

COMMENT ON, and LABEL
ON statements 102

syntax 181
SQL CREATE command 182

deriving SQL/DS object names from
aliases 101

displaying internal diagnostic
output 100

generating SQL CREATE,
COMMENT ON, and LABEL
ON statements 102

syntax 183
SQL CREATE SYNONYM statement

generation 244
SQL DROP command

an example of the impact analysis
report 189

deriving SQL/DS object names from
aliases 101

displaying internal diagnostic
output 100

impact analysis report 188
NO-IMPACT keyword 189
syntax 190

SQL DROP SYNONYM statement
generation 244

SQL GRANT command 190
deriving SQL/DS object names from

aliases 101
displaying internal diagnostic

output 100
syntax 191

SQL LABEL command 180
deriving SQL/DS object names from

aliases 101
displaying internal diagnostic

output 100
generating SQL CREATE,

COMMENT ON, and LABEL
ON statements 102

Index

293

syntax 182
SQL LIST CYCLES 197

output
description 75
example 75
introduction 74

syntax 198
SQL LIST TABLES command 198

output
description 73
example 74
introduction 73

syntax 200
SQL PLOT CLUSTER command 200

cluster plot
tables in a specific format 202
tables selected by WBDA

number 201
output

example 59
for all tables 201
format of cluster diagram 57
information in cluster

diagram 58
introduction 56
SQL design relationship

matrix 62
tables selected by name 201

syntax 202
SQL PLOT

REFERENTIAL-STRUCTURES
command 203
displaying

all referential structures 204
one referential structure 206

output
example 71
introduction 64
layout 65

syntax 207
SQL POPULATE command 208

combining options 216
examples 216
generating

SQL-INDEX members 211
SQL-TABLE members 209
SYSTEM member 213

introduction 208
populating SQL-VIEW members 212
references

to dbspaces 210
to SQL-USER members 213

selecting tables in Workbench Design
Area 214

support for referential integrity 209
suppressing support for referential

integrity 210
syntax 217
tailoring generated definitions 215

SQL PREVIEW command 218
combining options 227
examples 227
generating

SQL-INDEX definitions 222
SQL-TABLE definitions 220
SQL-VIEW definitions 223
SYSTEM definition 224

references
to dbspaces 221
to SQL-USER members 224

selecting tables in the Workbench
Design Area 225

support for referential integrity 220
suppressing support for referential

integrity 221
syntax 228
tailoring generated definitions 226

SQL PRODUCE command 236
deriving external names from

aliases 101
displaying internal diagnostic

output 100
generating a host language indicator

structure 103
syntax 239
tailoring DATE and TIME character

field lengths 104
SQL REPORT command 240

output
contents of tables 48
example 50
foreign key relationships 49

report tables
ALL 240
in a specific format 242
selected by name 241
selected by WBDA

number 241
syntax 242

SQL REVOKE command 242
deriving SQL/DS object names from

aliases 101
displaying internal diagnostic

output 100
syntax 191

SQL SIZE command 243
displaying internal diagnostic

output 100

ASG-Manager Products Relational Technology Support: SQL/DS

294

syntax 244
SQL SYNONYM command 244

deriving SQL/DS object names from
aliases 101

displaying internal diagnostic
output 100

syntax 245
SQL table report 48

contents of tables 48
example 50
foreign key relationships 49
introduction 48

SQL-COMMENT clause 180
SQL-TABLE 254
SQL-VIEW 268

SQL-DBSPACE 184
example 186
introduction 184
syntax 187

SQLI_CD_n variable 114
SQLI_CL variable 114
SQLI_COMMAND variable 113
SQLI_CS variable 114
SQLI_RETURN variable 114
SQLI_ROWS variable 114
SQLI_SQLCODE(1) variable 114
SQLI_SQLCODE(2) variable 114
SQLI_TABLE_NAME variable 113
SQLI_TABLE_SPACE variable 113
SQL-INDEX 192

example 196
introduction 192
syntax 196

SQL-LABEL clause 197
SQL-TABLE 254
SQL-VIEW 268

SQL-PRIVILEGE 229
examples 233
introduction 229
syntax 235

SQL-TABLE 245
examples 255
introduction 245
syntax 257

SQL-USER 259
example 261
introduction 260
syntax 261

SQL-VIEW 262
examples 269
introduction 262
syntax 275

STORPOOL clause 186
SUMMARY keyword 164

SYNONYMS clause 260

T
TABLE keyword 144
TABLE privilege 231
TABLE-LAYOUT keyword 237
tailoring

export 97
help text 122
import 128

U
UNIQUE keyword 193
USING clause

in the PREVIEW command 154
in the RECONCILE command 159

V
VIEW keyword 144

W
WBDA number 201

ASG Worldwide Headquarters Naples Florida USA I asg.com

	CD Contents
	Contents
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

	Publication Conventions
	ASG Support Numbers
	Business Hours Support
	Non-Business Hours - Emergency Support

	ASG Web Site
	Enhancement Fax Form
	Preface
	About this Publication

	Introduction
	Overview
	Features
	Introduction
	Corporate Dictionary/Repository
	Design Diagramming Tool
	Database Design Tool
	Data Definition Language (DDL) Generator
	COBOL, PL/I, and ASSEMBLER Generator
	Dynamically Submitting SQL Statements to DB2 or SQL/DS
	Importing Information from SQL/DS

	Functions: How to Use the Tools We Provide
	Introduction
	Standards
	SQL/DS Database Design
	Implementation
	Maintenance
	Summary

	Benefits
	Introduction
	A Shared and Re-usable Corporate Model
	Automated Design
	Conclusion

	What Do You Want to Do?
	Introduction
	ASG Support for Your SQL/DS Environment
	SQL/DS Database Design
	Producing Output Describing the SQL Design
	Generating and Populating SQL Dictionary Definitions of Specified Member Type

	SQL/DS Dictionary Definition
	Documenting an SQL/DS Dictionary Schema
	SQL/DS Object Definition

	SQL/DS Object Generation
	Generating SQL Statements and SQL/DS Host Language Data Structures
	Generating Tailored SQL Statements and SQL/DS Host Language Data Structures

	Dynamically Submitting SQL Statements
	Importing Information about SQL/DS Objects

	SQL/DS Database Design
	Introduction to SQL/DS Database Design
	Overview
	Support for Referential Integrity
	Introduction to Referential Structures and Cycles
	Features to Support SQL/DS

	Designing a SQL/DS Database
	Creating Entity and Userview Models
	Generating a Relational Schema
	Generating the SQL Design
	Reporting the SQL Design
	Populating the Dictionary with SQL Members
	Examples of the SQL/DS Database Design Process

	SQL/DS Design Analysis
	Output from the SQL REPORT Command
	Output from the SQL PLOT CLUSTER Command
	Output from the SQL PLOT REFERENTIAL-STRUCTURES Command
	Output from the SQL LIST TABLES Command
	Output from the SQL LIST CYCLES Command

	Generated SQL Member Definitions
	Generated SQL-TABLE Member
	Generated SQL-INDEX Member
	Generated SQL-VIEW Member
	Generated SYSTEM Member

	Dictionary Definition
	Introduction to Documenting an SQL/DS DBMS
	Documenting SQL/DS Objects
	Clauses Establishing Relationships between SQL/DS Member Types
	Documenting the Columns of SQL/DS Tables and Views
	Documenting SQL/DS Security Information
	Naming Conventions for SQL/DS Members
	The Derivation of External Names from SQL/DS Members
	The Derivation of Column Names from SQL/DS Members
	The Derivation of the Names of Tables, Views, Indexes, and Dbspaces from SQL/DS Members
	The Derivation of the Names of Synonyms, Constraints, Correlations, and Programs
	The Derivation of SQL/DS User Names

	Naming Guidelines for SQL/DS Members
	Processing Your SQL/DS Members

	Implementation and Maintenance
	Introduction to Generating SQL Statements and SQL/DS Host Language Data Structures
	Overview of Generating SQL Statements and SQL/DS Host Language Data Structures
	Generating Column Data Types
	Submitting Generated Output to Your Relational Environment

	Tailoring SQL Statements and SQL/DS Host Language Data Structures
	Introduction to Tailoring
	Displaying Internal Diagnostic Output
	Generating Object Names and External Names from Aliases
	Generating SQL CREATE, LABEL ON, and COMMENT ON Statements from One Member at the Same Time
	Generating a Host Language Indicator Structure
	Tailoring DATE and TIME Character Field Lengths

	Generation of SQL/DS Application Programs
	Dynamic SQL Services
	Introduction to Dynamic SQL Services
	Overview of Dynamic SQL Services
	Security and Authorization
	Output Printed by Dynamic SQL Services

	Creating Executive Routines to Dynamically Submit SQL Statements to Your DB2 or SQL/DS Environment
	Introduction to Dynamically Submitting SQL Statements from within Executive Routines
	Variables Used in Dynamic SQL Services
	The COMMAND and EXECUTIVE Members Used in Dynamic SQL Services
	Creating and Populating a Table
	Inserting Rows into a Table
	Importing Information and Assigning it to Command Variables
	Submitting any SQL Statement That Can be Prepared
	Creating Your Own HELP Text

	Import
	Introduction to Importing Information about External Objects
	Overview of Importing Information
	Naming Guidelines When Importing Information
	How Columns Are Documented

	Tailoring Import Commands
	Introduction to Tailoring Import Commands
	Tailorable Corporate Executive Routines
	Global Variables Used in the Import Commands

	Member Types and Commands
	Member Type and Command Descriptions
	EXTRACT SQL
	ISQL
	POPULATE
	PREVIEW
	RADD
	RECONCILE
	RIGN
	RREN
	RREP
	RUPD
	SQL ACQUIRE
	SQL ALTER
	SQL COMMENT and SQL LABEL
	SQL CREATE
	SQL-DBSPACE
	SQL DROP
	SQL GRANT and SQL REVOKE
	SQL-INDEX
	SQL LABEL
	SQL LIST CYCLES
	SQL LIST TABLES
	SQL PLOT CLUSTER
	SQL PLOT REFERENTIAL-STRUCTURES
	SQL POPULATE
	SQL PREVIEW
	SQL-PRIVILEGE
	SQL PRODUCE
	SQL REPORT
	SQL REVOKE
	SQL SIZE
	SQL SYNONYM
	SQL-TABLE
	SQL-USER
	SQL-VIEW

	Defining an AS Clause
	Filing Generated Output in a User-member

	Appendix
	Introduction to the Name Reduction Process
	Description of the Name Reduction Process
	Example of Name Reduction

	Glossary

	name:
	number:
	contact name:
	publication:
	product:
	version number:
	pub date:
	comments:

